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Abstract 

This study presents a method for classifying cow and horse leather using a small number of digital microscope 
images and topological data analysis. In this method, hair pore coordinates in the images are used as essential infor-
mation for classification. First, the coordinates were semiautomatically extracted using conventional image processing 
methods and persistent homology (PH) computation. Binary images with white pixels corresponding to the coordi-
nates were generated, and their PHs were computed using filtration based on the Manhattan distance. In addition 
to the pairwise distance between the two pores, zeroth- and first-order lifetimes were used as explanatory variables 
to construct the classifier. Among the three explanatory variables, the zeroth-order lifetime resulted in the highest 
classification accuracy (86%) for the test data. Furthermore, we constructed logistic regression (LR) and random for-
est (RF) models using the zeroth-order lifetime computed from all images and conducted model interpretation. In 
both LR and RF, information on a zeroth-order lifetime of less than 10 was used as an important explanatory variable. 
Additionally, the inverse analysis of birth–death pairs suggested that the zeroth-order lifetime contains topological 
information distinct from the conventional pairwise distance. Our proposed method is designed to be robust in data-
limited situations because it only uses hair pore coordinates as explanatory variables and does not require other 
information, such as hair pore density or pore size. This study demonstrates that accurate classifiers can be obtained 
using topological features related to hair pore arrangement.
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1  Introduction
Leather, a versatile material derived from animal hides, 
plays a crucial role in various products, including foot-
wear, accessories and automotive interiors. The intrin-
sic properties of leather, such as hardness, flexibility and 
durability, are largely determined by the animal species 
from which it originates. Consequently, accurate identi-
fication of the animal species used in leather products is 
of paramount importance for several reasons: it ensures 
transparency in raw material sourcing, enhances con-
sumer trust, facilitates quality control, supports market 
research and competition analysis, and protects endan-
gered species [1].

Traditionally, various analytical approaches have been 
employed for species identification in leather, including 
morphological studies, protein analysis and chemical 
analyses. However, these methods face limitations such 
as reduced effectiveness on processed leather, time-con-
suming procedures, potential inaccuracies due to sample 
degradation, and difficulties in achieving species-level 
resolution [2]. In traditional image analysis methods, 
leather experts have identified animal species by observ-
ing the arrangement of hair pore patterns, which vary 
among different animal species. While this identification 
method is practical, it relies heavily on expert knowledge 
and can be subjective, potentially introducing bias into 
the identification results.

In recent years, advanced image processing techniques 
have offered an effective approach to identifying leather 

species. Digital microscope and scanning electron micro-
scope images of leather samples have been utilized to 
extract morphological, geometrical, textural and statis-
tical features related to pore patterns. These extracted 
features serve as input for machine learning classifica-
tion models, facilitating the automated identification 
of leather species [3–6]. Additionally, a neural network-
based approach can be effective in automatically cap-
turing more complex and nuanced features that are not 
easily defined by traditional image processing techniques 
[7]. Rapidly evolving deep learning models, typically con-
volutional neural networks (CNNs) [8], have been widely 
utilized in various fields. Owing to their combination of 
convolutional and pooling layers, CNNs can maintain 
their robustness in positioning and capturing impor-
tant features for classification. Although an increase in 
the number of layers in a CNN can enhance its expres-
sive power and classification accuracy [9], complex deep 
learning models can suffer from the risk of overfitting 
and require sufficient data for optimization.

To achieve robust classification, CNNs need both 
architectural complexity and large datasets to prevent 
overfitting. Although data augmentation and transfer 
learning techniques are effective approaches for over-
coming the problem of limited data [10, 11], typical 
model-free data augmentation techniques, such as flip-
ping, rotation and noise injection, do not contribute to 
essential data augmentation because the original data 
are the same. Moreover, model-based data augmentation 

Graphical Abstract



Page 3 of 15Ehiro and Onji ﻿Collagen and Leather             (2025) 7:5 	

and transfer learning techniques in small-data situations 
require a model pretrained with sufficient data. Addition-
ally, transfer learning generally requires careful selection 
of the source domain, which potentially correlates with 
the target domain, to prevent negative transfer. There-
fore, these techniques require additional considerations 
and preparation steps compared with simply construct-
ing a classification model.

These challenges have motivated the exploration of 
alternative methods that do not require large amounts of 
data or complex neural network models. In this study, we 
aimed to construct a leather image classification model 
using topological features extracted from digital micro-
scope images to bypass the need for neural networks and 
large datasets. We employed topological data analysis 
(TDA), which applies algebraic topology to extract mean-
ingful information from complex and high-dimensional 
data by studying the shape and structure rather than 
individual data points. In TDA, data are represented as 
a simplicial complex composed of simplices, enabling 
the computation of persistent homology (PH) [12, 13]. 
PH characterizes sets of holes with specific dimensions, 
providing information about topological features such 
as connected components, loops and voids in the data. 
It extends traditional homology by analyzing how these 
features persist across different scales, generating birth–
death pairs that indicate when features emerge and dis-
appear. These pairs are typically visualized in persistence 
diagrams (PD) as two-dimensional (2D) histograms. In 
our approach, we used the lifetime (persistence), which 
represents the birth-to-death time of a hole, as an explan-
atory variable for machine learning.

By utilizing birth–death pairs, it is possible to quan-
tify the shapes of data that are conventionally difficult 
to extract and represent numerically. TDA is a unique 
method that can characterize the shape of data and is 
synergetic with machine learning [14]. TDA has been 
applied to various data analysis tasks, such as many-body 
atomic structures in glass [15], protein folding [16], nano-
porous metal–organic frameworks [17], higher-order 
structures of polymers [18], molecular fingerprints [19], 
relapse risk prediction in patients with acute lymphoblas-
tic leukemia [20], and brain network analysis [21].

In this study, we utilized the lifetime derived from PH 
as an explanatory variable reflecting the topological fea-
tures extracted from the images. By using the zeroth-
order lifetime, the classifier showed higher accuracy 
than when using pairwise distance, demonstrating the 
effectiveness of topological features in classifying leather 
images.

In some countries, such as Japan, legislation mandates 
the disclosure of animal species for leather products (e.g., 
Household Goods Quality Labeling Act of Japan). Mature 

cow and horse leather share similar characteristics, with 
subtle differences in pore size and distribution. These 
characteristics can vary significantly based on factors 
such as the animal’s age, individual differences and the 
specific body part [22]. These similarities and variations 
make species classification challenging, particularly with 
limited datasets. Therefore, this study aims to classify 
these two types of leather using TDA techniques.

2 � Experimental section
2.1 � Capturing and processing leather images
The classifier is constructed using scrap from commer-
cially available tanned leather samples collected from 
cows and horses. These leather samples were procured 
from diverse leather suppliers, with a collection of over 
20 small fragments. Fifty color leather images were cap-
tured using a digital microscope (KH-7700, Hirox Co., 
Ltd.) at a magnification of 40 × for cow and horse leather, 
respectively. The obtained color images were converted 
to grayscale, cropped, and resized to half of their original 
size of 300 × 300 pixels. Subsequently, contrast-limited 
adaptive histogram equalization (CLAHE) [23] and 2D 
Fused Lasso [24, 25] were applied. The clipping limit and 
tile grid size for CLAHE were set to 0.2 and 4 × 4, respec-
tively. OpenCV computer vision and a machine learning 
software library [26] were used for the image process-
ing. A 2D Fused Lasso is a regularization technique that 
penalizes differences in brightness between adjacent pix-
els. The loss function L(X,W;α, �) was minimized using 
the Nesterov accelerated gradient method [27].

where X is input image data, W is the weight matrix cor-
responding to X, λ is the regularization parameter for 
total variation (TV) L1 penalty, and α is a parameter to 
control the penalty to the mean squared error (MSE) 
between X and W. In the TV term, the L1 penalty was 
applied to the differences between adjacent pixels. The 
weight α for the gradient derived from the MSE term was 
set to 0.01, and the regularization parameter λ control-
ling the subgradient from the TV term was set to 0.05, 
with 5000 iterations.

To determine hair pore coordinates in the grayscale 
images, an adaptive threshold for pore brightness was set 
for each image. Using EMPeaks [28, 29], the brightness 
of the grayscale images was fitted with a two-component 
Gaussian mixture distribution, and pixels with bright-
ness above the 90th percentile of Gaussian distribution 
with the smaller mean were excluded from the extraction 
of pore coordinates. Subsequently, using the HomCloud 
library, level-set filtrations were constructed based on 
the brightness values of the grayscale images [30], and a 

(1)L(X,W;α, �) = α
2
·MSE(X,W)+ � · TV (W),
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zeroth-order PD (PD0) was created. A birth–death pair 
far from the diagonal of the PD indicates a distinct dif-
ference in brightness between the background and the 
pores. However, birth–death pairs with small brightness 
differences due to noise are concentrated near the diago-
nal. Therefore, an appropriate birth–death pair serving as 
the boundary between them was selected, and its lifetime 
was used as the standard threshold. By investigating the 
coordinates in the original image that correspond to the 
birth–death pairs with lifetimes greater than or equal to 
the aforementioned lifetime and that do not exceed the 
brightness threshold, the pore coordinates were semi-
automatically extracted. Although the above process 
often works effectively, the standard lifetime threshold is 
adjusted when the pore coordinate extraction does not 
work adequately. In addition, each image was resized to 
ensure that approximately 150 pores were included in 
the 300 × 300 images. To maintain the robustness of the 
classifier, slight discrepancies in the number of extracted 
pores were tolerated and the resulting binary images 
were utilized as training and test data.

2.2 � Constructing classifiers
For the binary images, the zeroth- and first-order PHs 
were obtained by constructing white-pixel-based filtra-
tions, using the Manhattan distance [31] to calculate the 
zeroth- and first-order lifetimes from the corresponding 
PHs. In addition, the pairwise distances between the two 
pores were calculated from the hair pore coordinates in 
the binary images. These were then used as explanatory 
variables by performing kernel density estimation (KDE) 
[32] with a Gaussian kernel. The bandwidth of the kernel 
function and the interval for discretizing the estimated 
probability density to prepare the explanatory variables 
were optimized along with the hyperparameters of the 
classification models using Optuna [33]. During optimi-
zation, the accuracy of the training data in fivefold cross-
validation (CV) was maximized using the tree-structured 
Parzen estimator (TPE) [34]. The 100 image data were 
randomly split into training/test ratios of 0.20/0.80, 
0.30/0.70, 0.50/0.50, 0.70/0.30 and 0.80/0.20, using strati-
fied sampling to maintain consistent class proportions 
across all splits. Classification performance was evaluated 
using the following metrics: accuracy, precision, recall, 
F1 score and area under the receiver operating character-
istic curve (AUC-ROC). The hyperparameter candidates 
for KDE and each model are listed in Table S1. Logistic 
regression (LR) [35], support vector machine (SVM) [36], 
random forest (RF) [37] and extreme gradient boosting 
(XGBoost) [38] were employed for the classification task. 
Linear and radial basis function (RBF) kernels were used 
for the SVM, and these SVM models were denoted as 
SVM (Linear) and SVM (RBF), respectively. Scikit-learn 

[39] and XGBoost [38] libraries were used to construct 
classification models.

For the comparison, CNN was implemented for 
binary classification using PyTorch [40], an open-source 
machine learning library. The network architecture com-
prises two convolutional layers, followed by two fully 
connected layers. Each convolutional layer is followed 
by ReLU activation and max pooling. Dropout is applied 
between the fully connected layers to mitigate overfitting. 
An on-the-fly data augmentation strategy was employed 
to enhance the model’s generalization capability. Each 
training image was augmented by applying rotations of 
0, 90, 180 and 270 degrees, quadrupling the size of the 
training dataset. The Adam optimizer and cross-entropy 
loss were used for training. The dataset was split into 
training (64%), validation (16%) and test (20%) sets using 
stratified sampling to maintain class balance across all 
sets. The hyperparameters listed in Table S1 were tuned 
using Optuna. The best-performing hyperparameters 
were then used to train the final model for 50 epochs.

The LR and RF were constructed using all images by 
tuning their hyperparameters in a fivefold CV. For the 
LR, standard regression coefficients were investigated 
for model interpretation. The constructed RF model was 
explained using SHapley Additive explanations (SHAP) 
[41], which is a widely used technique for model inter-
pretation. In this study, TreeExplainer [42] was adopted 
to explain the RF output.

Variables with high correlation coefficients between 
explanatory variables and those with a significant num-
ber of repeated values were excluded. Prior to the analy-
sis, each variable was autoscaled.

3 � Results and discussion
3.1 � Image processing for extracting hair pore coordinates
Figure  1 shows digital microscope images of cow and 
horse leather. As shown in Fig.  1, the color, surface 
roughness and pore size of the leather samples varied. 
Therefore, in data-limited situations, it is anticipated 
that classification between cows and horses is challeng-
ing because the variety of images can be noisy, which 
deteriorates model construction. Hence, in this study, we 
considered the pore arrangement pattern in the images, 
that is, the hair pore coordinates, as the most essential 
and crucial information and attempted to extract them 
for model construction.

Figure  2 illustrates the steps from image acquisition 
to model construction. First, the images were converted 
to grayscale and cropped to a specific size. Next, for the 
ease of image processing, we resized the images to half 
their original size and flattened the brightness distribu-
tion using CLAHE. Furthermore, we used a 2D Fused 
Lasso for image smoothing. A 2D Fused Lasso performs 
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regularization to minimize the difference in brightness 
between adjacent pixels in both height and width direc-
tions. This not only removed noise but also prevented 
the extraction of multiple coordinates from a single hair 
pore area, ensuring that a representative position for 
each pore was extracted. In this study, mild CLAHE pro-
cessing conditions were adopted as the images were to 
be binarized. The CLAHE parameters were preliminary 
determined through visual inspection of the resulting 
images. The selected parameters minimized the differ-
ences in brightness distribution among 144 subregions 
within each image. The distances between brightness dis-
tributions of the 144 subregions were evaluated using the 
mean earth mover’s distance (Fig. S1).

Figure S2 shows the original grayscale image and 
images obtained after applying the 2D Fused Lasso with 
different L1 regularization penalties. Although the regu-
larization parameter used in this study was not large, 
Fig. S2 shows that the smoothing effect on the image 
became more pronounced as the regularization parame-
ter increased. Although a single regularization parameter 
was used in this study, it is also possible to apply differ-
ent regularization parameters to each image. In general, 

a large regularization parameter strongly removes noise 
and reduces the difference in brightness within local hair 
pore areas. The 2D Fused Lasso loss function exhibits 
convexity and requires tolerable computational time due 
to the moderate dataset size. Based on these properties, 
the number of iterations was conservatively set to 5000, 
ensuring sufficient convergence. Figure S3 demonstrates 
that comparable smoothing results can be achieved with 
fewer iterations in the present dataset.

Sublevel filtrations based on brightness were con-
structed from the grayscale images processed using 
2D Fused Lasso. Filtration enabled PH computation 
and generated the PD0s (Fig.  3). In this filtration, we 
tracked the changes in the topological features as a 
threshold for binarizing grayscale images, resulting in 
a chain of increasing complexes. Inclusion relation-
ships of complexes in the filtration induced linear maps 
connecting homology groups at each threshold. Con-
sequently, algebraic computations of PH are feasible 
and provide topological information on the numerical 
changes in homology groups in a specific dimension. 
Topological information can be represented as birth–
death pairs in PD. Birth–death pairs in PD indicate 

Fig. 1  Digital microscope images of cowhides and horsehides
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the birth and death times of holes in a specific dimen-
sion. Birth–death pairs far from the diagonal of the 
PD corresponded to long-lived holes. In this analysis, 
the long-lived holes likely correspond to the dark hair 
pore areas. Furthermore, birth–death pairs near the 
diagonal correspond to short-lived holes, which often 
correspond to noise. Therefore, as shown in Fig.  3, a 

birth–death pair that appeared to be positioned near 
the boundary between short- and long-lived holes 
was selected, and its lifetime was used as the stand-
ard threshold for pore coordinate extraction. While 
some images exhibited a more gradual positioning of 
birth–death pairs than those in Fig. 3, the same process 
was applied to all images. The pore coordinates were 

Fig. 2  The procedure to construct a classifier
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extracted by adaptively adjusting the standard thresh-
old as required.

Because hair pore areas are generally darker than 
other areas, relatively bright areas should be elimi-
nated as hair pore extraction candidates. Therefore, 
the brightness of the grayscale images was deconvo-
luted into two Gaussian distributions (Fig. S4). Decon-
volution was performed using EMPeaks, in which an 
EM-algorithm-based approach was employed to pro-
cess large amounts of data quickly and achieve sta-
ble and automatic calculations. As stated above, the 
purpose of deconvolution in this study was to prevent 
the extraction of areas that were too bright as pores. 
Thus, emphasis was placed on the deconvolution of 
bright and dark areas using a two-component Gauss-
ian mixture distribution rather than focusing solely 
on the fitting accuracy. Pixels with brightness greater 
than the 90th percentile of the Gaussian distribution 
with a smaller mean (component 2) were excluded 
from the extraction targets. Hair pore coordinates were 
extracted using the above process (Fig.  4). Following 
this process, binary images were obtained by setting the 
pore coordinates to white, and all other areas to black. 
This process allows for semiautomation of the laborious 
task of manually extracting numerous pore positions.

Although the proposed method involves slight human 
intervention, it does not require specialized leather 
knowledge. In this method, there exists some arbitrari-
ness in selecting points in a PD. Multiple point selec-
tions within the shaded area of Fig. 3 yielded consistent 
identification of the same pixels as pore locations (Fig. 
S5). This robustness suggests that the method main-
tains reliability despite the presence of a manual step. 

The visual inspection step for the binarized image 
serves as a final verification procedure to ensure the 
quality of the results.

3.2 � Constructing a classification model using binary 
images

Hair pore density in an image can differ depending on 
factors, such as species and age. As shown in Fig. 1, the 
number of white pixels corresponding to the pores in the 
binary images obtained from the above process varies 
depending on the image. In  situations involving diverse 
and abundant data, images with varying numbers of 
pores are important features. However, in data-limited 
situations, hair pore density can be noisy information. 
Therefore, we used only the pore arrangement patterns 
and excluded information on hair pore density and pore 
size. To eliminate the influence of hair pore density, the 
images were resized such that each image contained 
approximately 150 pores. To ensure applicability to 
diverse leather samples, including those with wider pore 
spacing, we fixed the magnification at 40x, which results 
in at least 150 pores per image for most samples.

The zeroth- and first-order PHs of the resized binary 
images were calculated to generate zeroth- and first-
order lifetimes. As mentioned above, lifetimes represent 
the period from the birth to death of holes in a specific 
dimension. In addition to the lifetimes, the pairwise dis-
tance between the two hair pores was computed as an 
explanatory variable. Instead of using lifetimes and pair-
wise distances directly, KDE was performed to estimate 
the density distributions of these features. The estimated 
probability densities were discretized with specific grid 

Fig. 3  PD0s of grayscale images
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sizes, and the probability densities at each point were 
used as explanatory variables.

The results of the KDE with specific hyperparameters 
(Table  S2) for the zeroth- and first-order lifetimes and 
pairwise distances are shown in Fig.  5. Each thin line 
represents the result of KDE for each image, whereas the 
thick lines represent the average probability density for 
each class. Figure 5 shows that the probability density of 
the zeroth-order lifetime most clearly highlights the dif-
ferences between the two classes. Centering reduces the 
influence of dynamic ranges and distinguishes the aver-
age probability densities across all features.

Principal component analysis (PCA) was applied to the 
KDE results to reduce the dimensionality of each explan-
atory variable. In PCA, a new variable (PC1) was created 
as a linear combination of the original variables in the 
direction of the largest variance. A new variable (PC2) 

was subsequently created with the constraint of being 
orthogonal to PC1. Figure 6 presents the PCA score plots 
for the explanatory variables. The PCA visualizes the 
distribution of the two classes through linear mapping. 
The PCA results using the zeroth-order lifetime suggest 
that the distributions of the two classes are separated. 
Although a similar separation trend was observed for the 
pairwise distance, the boundary between the two classes 
was less distinct than that of the zeroth-order lifetime. 
However, the PCA result using the first-order lifetime 
indicates relatively similar distributions for both classes. 
Because PCA is a simple linear dimensionality reduction 
technique, it was suggested that complex information, 
that is, the shape of the data, in the binary images was 
extracted, especially from the zeroth-order lifetime.

In Figs. 5 and 6, the explanatory variables were gener-
ated with specific hyperparameters (Table S2); however, 

Fig. 4  The original grayscale images (a, c) and the results of pore coordinate extraction (b, d)
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these may not be optimal for classification. Therefore, 
we performed Bayesian optimization (BO) to adjust the 
hyperparameters of KDE along with those of the classi-
fier (Table S1). BO was performed using a TPE sampler 
[34].

Figure 7 illustrates the classification performance met-
rics of the models evaluated using a 20% test split. The 
detailed classification results in the form of confusion 
matrices are presented in Fig. S6. Figure S7 demonstrates 
the classification results for various test sizes (30%, 50%, 

70% and 80%). Overall, the trends in the classification 
performance were generally consistent. LR and SVM 
(Linear) using the zeroth-order lifetime showed the high-
est classification accuracy. These classification accuracies 
were higher than those of nonlinear classification mod-
els such as SVM (RBF), RF and XGBoost. As shown in 
Figs. 7, S6 and S7, the classification performances on the 
training data exceeded those on the test data, with this 
trend being particularly pronounced in tree-based mod-
els such as RF and XGBoost. These nonlinear classifiers 

Fig. 5  Density distributions of zeroth-order lifetime (a, d), first-order lifetime (b, e) and pairwise distances obtained via KDE (c, f) (top row), 
along with their centered density distributions (bottom row)

Fig. 6  The PCA score plots of density distributions of zeroth-order lifetime (a), first-order lifetime (b) and pairwise distances (c)
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Fig. 7  Classification performance metrics (accuracy, precision, recall, F1 score and AUC-ROC) of different models for each explanatory variable 
on test (a) and training (b) datasets with 20% test size
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are more complex than LR and SVM (Linear), likely 
resulting in higher risk of overfitting and consequently 
lower classification performance on the test data. On the 
other hand, using pairwise distance as an explanatory 
variable showed a trend of relatively high classification 
accuracy with RF, but the performance was comparable 
to or lower than that of the classification models using 
the zeroth-order lifetime. As shown in Fig. S7, although 
the classification accuracies on test data tended to 
decrease as the amount of training data was reduced, the 
models maintained superior performances compared to 
CNN with 80% test size. The CNN model exhibited lower 
and more unstable classification performance even after 
data augmentation, suggesting both the inherent difficul-
ties in implementing CNN models for small datasets and 
the potential effectiveness of zeroth-order lifetime as a 
discriminative feature in this task.

As shown in Figs. 5 and 6, the differences in the distri-
butions of the two classes are more prominent with the 
zeroth-order lifetime compared with the other explana-
tory variables. Therefore, relatively high classification 
accuracy was achieved using simple linear classification 
models. However, when using the pairwise distance as 
an explanatory variable, the differences between the two 
classes become slightly ambiguous, and the explanatory 
variable is higher-dimensional. This may have resulted 
in complex nonlinear classification models with a higher 
classification accuracy. Among all metrics, LR or SVM 
(Linear) tended to show the highest classification accu-
racy using the zeroth-order lifetime. On the other hand, 
the use of first-order lifetime did not result in high clas-
sification accuracy. One possible reason for this is the 
smaller number of one-dimensional holes compared to 
zero-dimensional holes. Although there are approxi-
mately 150 zero-dimensional holes in all binary images, 
the number of one-dimensional holes varies among 
binary images and is often less than 50. Therefore, the 
scarcity of one-dimensional holes may have led to vari-
ability in the first-order lifetime and decreased classifica-
tion performance.

As part of an ablation study, classification models were 
constructed and evaluated without applying 2D Fused 
Lasso (Fig. S8). Although the overall model accuracy 
remained largely unaffected by the omission of 2D Fused 
Lasso in this dataset, linear models such as LR and SVM 
(Linear) tended to decrease classification performance on 
the test data when using pairwise distance as the explana-
tory variable.

3.3 � Important topological features in classification
Using the zeroth-order lifetime as an explanatory vari-
able resulted in LR with an accuracy of 86% and RF of 
85% when splitting all data with a training/test ratio of 

0.80/0.20. As relatively high classification performances 
were confirmed for LR and RF in the test set evaluation, 
these models were constructed with all images using a 
fivefold CV. The accuracies of LR and RF for the valida-
tion data in fivefold CV were 89% and 90%, respectively.

Figures S9 and S10 show the centered density distribu-
tions of zeroth-order lifetime and their PCA score plots 
for samples which LR misclassified. These figures indi-
cate that the misclassified samples exhibit slightly differ-
ent KDE patterns from the correctly classified samples, 
resulting in their shifted distribution in the design space. 
These results suggest that samples located near classifica-
tion boundaries were likely to be misclassified.

Figure  8 shows the standard regression coefficients of 
LR for the zeroth-order lifetime. In this LR model, L1 reg-
ularization was selected as the hyperparameter "penalty," 
and the number of explanatory variables was reduced to 
four. This suggests that informative features for classifica-
tion can be extracted from images using TDA. As shown 
in Fig. 8, the zeroth-order lifetime of approximately 0 and 
7.59 significantly contributes to the classification. More-
over, when the probability density of the zeroth-order 
lifetime corresponds to these ranges, the predicted prob-
abilities for cows and horses increase. However, infor-
mation from the zeroth-order lifetime of approximately 
24.3 and 27.34, which included more global patterns of 
pore arrangements, weakly contributed to the predic-
tion. The standard regression coefficients suggest that 
the LR model uses zeroth-order lifetime of less than 10 
as an important feature. This lifetime range provided pro-
nounced differences between the two classes in the KDE 
results (Fig. 5).

RF resulted in a classification model using 13 explana-
tory variables. Figure  9 presents the results of the RF 

Fig. 8  Standard regression coefficients of the LR model for predictive 
probabilities of horse classes
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model interpretation using SHAP. SHAP is a model inter-
pretation technique based on cooperative game theory 
that is applicable to any classification model. In this study, 
the SHAP values were computed using TreeExplainer 
[42], an explainer suitable for decision tree-based models. 
Figure  9a presents a summary plot of the contributions 
to the predictive probability of the horse class. The color 
represents the original feature value of each explanatory 
variable, whereas the horizontal axis indicates the contri-
bution to the predicted probability of the horse class. The 
important explanatory variables for RF correspond to the 
areas of the zeroth-order lifetime where differences were 
observed between the two classes, as shown in Fig.  5a. 
These results suggest that RF has a reasonable basis for 

classification. In both LR and RF, information from the 
zeroth-order lifetime area less than 10 was estimated as 
an important explanatory variable. This suggests a statis-
tically significant difference in the number and arrange-
ment of hair pores in close proximity.

Finally, we visualized the geometric structures cor-
responding to a zeroth-order lifetime of less than 20. To 
select representative samples from each class, we clus-
tered the KDE results (Fig.  5) using k-means (k = 3) for 
each animal species, and extracted samples close to the 
centroids (Fig. 10). Considering the results of the elbow 
method, the cluster numbers were set to k = 3 (Fig. S11).

Figure  11 shows the results of the inverse analysis of 
the binary images. An inverse analysis was performed in 

Fig. 9  The SHAP analysis results for the predictive probabilities of horse classes using the RF model: a Impact of explanatory variable on model 
output and b average impact of explanatory variable on model output magnitude

Fig. 10  The representative samples obtained using k-means clustering (k = 3) for each class
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Fig. 11  The results of the inverse analysis for the representative samples of the clusters (red: birth pixel, blue: death pixel)
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the lifetime range of [0, 20). The red points correspond 
to the birth positions of the zeroth-order homology, 
whereas the blue points correspond to their death posi-
tions. The birth and death pixels are connected by green 
lines. As expected, in the [0, 5) and [5, 10) lifetime ranges, 
birth–death pairs are generally formed by adjacent pixels, 
but some pairs are not necessarily formed by the closest 
pairs of pixels. Lifetimes in these ranges were important 
explanatory variables in both LR and RF models. By con-
trast, the variability in the distance between the birth and 
death pixels increased in the [10, 15) and [15, 20) ranges. 
This implies that the TDA extracted information on the 
global arrangement patterns of the binary images. In the 
RF model, lifetimes in these ranges were used as rela-
tively important explanatory variables. However, these 
features were not used in the LR, but lifetimes of approxi-
mately 24 and 27 were used, with relatively low impor-
tance. The results of the model interpretations suggest 
that the probability densities of the lifetimes in the range 
of [0, 20), particularly in [0, 10.71] contain useful infor-
mation for classification. Zeroth-order lifetime features 
not only extract local information but also global infor-
mation in a specific area, providing different information 
from a simple pairwise distance. This study reveals that 
the zeroth-order lifetime can work effectively as a valu-
able descriptor.

By extracting information about hair pore arrange-
ment patterns as zeroth-order lifetime, it was found that 
relatively high classification performance can be achieved 
under data-limited conditions. The proposed method 
assumes model construction using a small number of 
images and does not rely on information regarding hair 
pore density or pore size. Nevertheless, the topological 
features of hair pore arrangement enabled the construc-
tion of an accurate classification model.

4 � Conclusions
In this study, a novel method for classifying cow and 
horse leather using digital microscope images was 
developed, specifically designed to handle small data-
sets effectively. The preprocessing pipeline included 
grayscale conversion, CLAHE, 2D Fused Lasso and 
brightness deconvolution, followed by PH computa-
tion. Hair pore coordinates were semiautomatically 
extracted using the results of PH computation, and 
binary images were generated from the coordinates. 
Based on the binary images, zeroth- and first-order 
lifetimes and pairwise distances were calculated. With 
a 20% test set allocation, linear classification models 
utilizing zeroth-order lifetime features achieved 86% 
accuracy on test data, outperforming both the pairwise 
distance approach and CNN with grayscale images. 

Model interpretation techniques revealed that life-
times in the [0, 20) range were particularly important 
for classification, suggesting that topological features 
capture more complex pore arrangement patterns than 
simple pairwise distances. The proposed method dem-
onstrates that PH enables effective semiautomatic fea-
ture extraction and robust classification, particularly 
effective when only limited training data are available.
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