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Summary

The non-enzymatic reaction of proteins with glu-

cose (glycation) is a topic of rapidly growing im-

portance in human health and medicine. There is

increasing evidence that this reaction plays a

central role in ageing and disease of connective

tissues. Of particular interest are changes in type-

I collagens, long-lived proteins that form the me-

chanical backbone of connective tissues in nearly

every human organ. Despite considerable correla-

tive evidence relating extracellular matrix (ECM)

glycation to disease, little is known of how ECM

modification by glucose impacts matrix mechan-

ics and damage, cell-matrix interactions, and ma-

trix turnover during aging. More daunting is to un-

derstand how these factors interact to cumula-

tively affect local repair of matrix damage, pro-

gression of tissue disease, or systemic health

and longevity. This focused review will summa-

rize what is currently known regarding collagen

glycation as a potential driver of connective tis-

sue disease. We concentrate attention on tendon

as an affected connective tissue with large clini-

cal relevance, and as a tissue that can serve as a

useful model tissue for investigation into glyca-

tion as a potentially critical player in tissue fibro-

sis related to ageing and diabetes.

KEY WORDS: collagen, advanced glycation end-

products, crosslinks, tendon mechanics, diabetes,

ageing.

Setting the stage: central functional roles of collagen 

The term collagen comes from the Greek word κoλλα

(kolla, meaning “glue”), due to the use of animal skin

and collagen-rich tissues a glue source1. In a broader

sense, collagen is in fact the “glue” of our body, hold-

ing it together by providing elasticity and strength to

most tissues where mechanical function is essential,

such as skin, cartilage, tendons and bones 2,3.   

The collagen family of proteins is the most abundant

in the human body – representing a basic building

block within nearly every tissue and organ. Collagen

structures form largely by cell-mediated self-assem-

bly of small collagen molecules (300 nm in length;

circumscribable with an approximate 1.5 nm diame-

ter)4. During the process of collagen self-assembly,

various types of inter-molecular crosslinks stabilize

the helical supramolecular structures that form. Col-

lagen crosslinks can be conceptually classed as ei-

ther enzymatic or non-enzymatic, with enzymatic

crosslinking representing an essential step in the de-

velopment and repair of collagen connective tissues.

Whether in the early stages of embryonic tendon de-

velopment or the late stages of connective tissue

disease, collagen crosslinks play a key role in tissue

mechanics, cell signaling, matrix damage accumula-

tion, and tissue repair.

Cell-matrix interactions involving collagen include a

wide range of classical receptor-ligand mediated sig-

naling pathways5. Nonetheless the main functional

feature of most collagens (this review will focus on

type-I collagen) is mechanical load bearing of tensile

force.The mechanical function of any connective tis-

sue results from often highly sophisticated architec-

tural arrangement of collagen substructures, along

with other elastic extracellular matrix proteins such as

elastin, and water binding proteoglycans. Although

soft connective tissues of the body are composed of

nearly identical basic molecular building blocks, their

varied arrangement makes possible an exquisite

range of potential tissue mechanical properties. The

cells that mediate the functional assembly of these

building blocks do so according to their epigenetic

pre-program as guided by the mechanical demands

on the tissue.

Within any collagenous connective tissue, the func-

tional building blocks that provide tensile strength and

elasticity are called collagen “fibrils”. The collagen fib-

ril is a helically arranged supramolecular structure

that can range in diameter from a few to several hun-

dred nanometers, with lengths that can run on the or-
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der of centimeters6. How collagen molecules are ac-

crued into these structures (a process known as fibril-

logenesis) relies on sequences of elegant intracellu-

lar and extracellular events that, while fascinating,

are outside the scope of the present review. Current

evidence suggests that the mature collagen fibrils re-

sulting from fibrillogenesis are highly elastic struc-

tures – meaning that they mechanically load and un-

load in a mostly reversible fashion. To be able to re-

versibly load and unload, without damage, is the

defining functional requirement of these protein su-

perstructures. Collagen cross linking is a central en-

abler (and potential disabler) of this function.

The good: enzyme mediated collagen cros-slinking

The mechanical competence of individual type-I col-

lagen fibrils heavily depends on the enzyme lysyl ox-

idase, which regulates the robust formation of stable

inter-molecular collagen crosslinks during matura-

tion7. The absence of these head to tail chemical

bonds drastically diminishes collagen fibril strength

and whole tissue function8,9. Lysyl oxidase specifical-

ly acts on lysine or hydroxylysine in the telopeptide

region of the collagen molecule, and results in a di-

valent, immature crosslink with an opposing amino-

acid in the triple-helical region10. These immature

crosslinks later spontaneously convert into more sta-

ble trivalent crosslinks that increase collagen inter-

connectivity, fibril stability and whole tendon me-

chanical integrity (for excellent reviews)7,11. 

Simple biochemical correlations of native crosslink con-

tent with tendon mechanical properties are rather

weak12-15, reflecting the likely confounding influence of

other dominant structural or compositional factors16.

The essential functional role of crosslinking in collagen

fibril stability and whole tissue integrity, however, is

clearly demonstrated in the severely compromised con-

nective tissues of animals subjected to dietary inhibition

of lysyl oxidase, which results in collagen fibrils and

tendons with reduced strength8,9. The importance of
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crosslinks to fibril integrity has been indicated theoreti-

cally17 and demonstrated experimentally9,18 by balanc-

ing molecular slip and stretch under load. 

The importance of crosslinking in preventing molecu-

lar slippage and resultant fibrillar damage can also be

inferred from the decreased thermal stability of ten-

dons that is known to take place after sub-maximal

tissue overload19. Given that lysyl oxidase mediated

crosslinks are so essential to the proper development

of fibril structure and mechanical integrity, these are

perhaps the best-characterized collagen crosslinkers.

The bad: advanced glycation endproduct crosslink-

ing

While enzyme driven crosslinking plateaus at matura-

tion, connective tissue stiffness has been shown to

further increase with age and diabetes20-26. This tis-

sue stiffening has been associated with non-enzymat-

ic, oxidative reactions between glucose and collagen

which lead to the formation of so-called advanced

glycation end-products (AGEs)27,28. AGE accumula-

tion is particularly high in long-lived proteins, such as

collagen. Indeed, collagen half-life varies between tis-

sues but remains generally large, from 1-2 years for

bone collagen to about 10 years for type I in skin29. The

low biological turnover of collagen makes it therefore

susceptible to interaction with metabolites, primarily

glucose. Aside from protein longevity, another factor

that influences the formation of AGEs is the glucose

level in the blood stream. Hyperglycemia related to dia-

betes is suspected to strongly predispose tissues of

these patients to accumulation of AGEs30,31.

The glycation reaction initiates with the formation of a

reversible Schiff base between a carbohydrate – typi-

cally glucose – and a protein amino group (e.g., a

collagen lysine side-chain) (Fig. 1). The unstable

Schiff base becomes a stable intermediate keto

amine, often designated asa so-called Amadori prod-

uct. Afterwards, a complex series of reactions (over

the course of months or years) lead to various meta-

Figure 1. (Left) Schematic of the sequence of metabolic chemical reactions behind AGE formation (e.g. pentosidine)72 and

(Right) how such products may form adducts and/or crosslinks on collagen structures39. 



bolic by-products of glycolysis including the products

glyoxal, methyl glyoxal (MGO) and 3-deoxyglu-

cosone, all of which can interact with extracellular

proteins to form AGEs32. Some AGEs can bridge be-

tween the free amino groups of neigh boring proteins

to form inter-molecular crosslinks, while others known

as ‘adducts’ affect only a single protein33. Among the

different AGEs, the most abundant in collagen tissues

has been recently found to be glucosepane, a lysine-

arginine crosslink34,35. 

So far, there is no direct experimental evidence link-

ing AGEs with increases in collagen fibril stiffness,

which in turn would cause increased stiffness at high-

er levels of tissue architecture. Although the mechan-

ical effects of AGEs at the molecular and supramole-

cular levels are poorly understood, this link seems

plausible and has been widely presumed to exist on

the basis of the well documented correlation between

AGE markers (pentosidine; auto-fluorescence) and

increasing tissue stiffness36.

The ugly: functional consequences of AGEs in con-

nective tissue

Despite the recognized importance of AGEs in the

development of age – and diabetes – related condi-

tions, there are still several important open questions

regarding their role in the onset and progression of

connective tissue disease. These can be broadly di-

vided into two functional classes, biological and bio-

mechanical.

The biological aspect relates primarily to collagen-

protein and collagen-cell interactions. Here, the for-

mation of AGEs (adducts or crosslinks) on specific

amino acids involved in intermolecular recognition

could lead to the dramatic modification of the interac-

tion of collagen with other molecules such as proteo-

glycans (PGs), enzymes (e.g., collagenase) and cell

integrins. AGEs modify the collagen surface and are

known to affect cell-matrix interactions in a manner

leading to inhibited wound repair and exacerbated in-

flammation37,38. A recent modeling study39 based on

atomistic model of collagen40 has shown that colla-

gen amino acids that are most likely prone to form

glucosepane crosslinks (due to their position and con-

figuration) are found close to collagenase and cell inte-

grin binding sites, as well as near interaction domain for

heparin and keratansulphate. These findings resonate

with experimental investigations showing that collagen

glycation induces a reduced affinity for heparin and ker-

atansulphate proteoglycans (but not for dermatansul-

phate and decorin) as well as reduced endothelial cell

migration41. Protein glycation ultimately stimulate cellu-

lar production of reactive oxygen species, and the acti-

vation of inflammatory signaling cascades via AGE sig-

naling receptors (RAGEs)42. 

On the other hand, nonenzymatic intermolecular

crosslinking are believed to alter the biomechanics of

collagenous tissue. Glucose reaction with the amino

acid side-chains, and subsequent further reaction to

form a crosslink with an adjacent collagen molecule,

results in a modification of the physical properties of

the collagen, but the detailed effects of AGEs on col-

lagen mechanics at the different hierarchical scales

are still poorly understood. While these intermolecu-

lar crosslinks have been tied to higher failure loads,

stiffness, and denaturation temperatures30,43, they

are also associated with increased mechanical fragili-

ty of the tissue44. AGE crosslinks have also been im-

plicated in reduced remodeling capacity, a concept

that has been demonstrated in vitro as reduced sen-

sitivity to collagenase43,45,46. 

How collagen crosslinks affect whole tendon function

is complex, as indicated by an increased failure load

of individual collagen fibers that paradoxically yields

diminished tissue failure properties. The picture is fur-

ther muddied by contradictory reports in the literature

that have inconsistently correlated crosslink density

to tissue stiffness13,44,47-52
. In an attempt to eliminate

potentially confounding effects of genotype, systemic

alterations due to age or disease state, and lifestyle,

some studies have investigated the effects of

crosslinking by direct incubation of tendon with a

range of sugars and/or aldehydes solutions, serving

as valuable models for ageing and diabetes (Fig. 2).

These studies have generally well-mimicked the struc-

tural changes of collagen fibrils that have been found in

vivo, but these studies clearly associate AGE crosslinks

to tissue stiffening and brittleness46,53,54. Such changes

are potentially critical, since altered extracellular matrix

mechanics will subsequently affect the mechanical

stimuli that drive resident cell behavior and regulate

cellular repair of matrix damage. It is more than feasible

that age-related mechanical changes in the collagen

matrix could thus play a role in loss of tissue homeosta-

sis and ability to cope with the micro-damage that accu-

mulates in everyday life27,28.

Clinical experience suggests that aged and diabetic

connective tissues appear stiffer to the touch than

healthy tissues, although changes in stiffness cannot

be explained by increased collagen content alone22,25.

Aged and diabetic tissues are also accompanied by

characteristic yellowing of the collagen matrix that ac-

cords with experimental evidence indicating age-relat-

ed decreases in collagen solubility and heightened

collagen resistance to protease breakdown. These

phenomena have been causally linked to non-enzy-

matic glycation of proteins55-58. 

The final duel: toward AGE crosslink breaking thera-

pies 

Various approaches have been taken to prevent for-

mation of AGEs (for an excellent review)59. For in-

stance, a reduced alimentary glucose uptake has

been shown to be beneficial, as have approaches

seeking to breakdown or block intermediate molecu-

lar interactions. Further efforts have shown potential

benefit in “protecting” amino acid residues by agents

that competitively bind aldehydes. Complementing
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these preventative approaches, some therapeutic ap-

proaches have sought to break existing AGE

crosslinks. Contrary to the mentioned preventative

approaches, crosslink breaking can reverse AGE

crosslinking and its deleterious effects on tissue me-

chanics and matrix remodeling. Since AGE crosslinks

in tendon are only secondary complications of dia-

betes, most anti-AGE work has been done in other

tissues (such as skin and arteries). However, their

potential effectiveness was first demonstrated using

rat tail tendon60. At present, the most widely used

crosslink breaker is alagebrium (ALT-711) which was

shown able to reverse carotid artery stiffness in ex-

perimental models of diabetes61. However, it is not

clear to what extent alagebrium efficacy in reducing

diabetes related vascular and myocardial stiffness

was due to the breaking of crosslinks. Such effects

are also promoted by systemic effects of the drug on

cytokine activity and/or oxidative stress reduction62.

In any case, as far as we are aware there is no study

testing the ability of crosslink breaking therapies to

ameliorate the predisposition of tendon to mechanical

damage, or promote “healthy” tissue remodeling at a

repair site.

Another promising strategy for protein deglycation re-

sides in the use of a family of deglycating en-

zymes35,63,64, also called Amadoriases, Fructosyl

Amino Acid Oxidases (FAODs) or Fructosyl Amine

Oxidases (FAOX). These enzymes, found in fungi

and bacteria, are able to cleave low molecular weight

Amadori product (i.e., glycated amino acids) and yield

the free amine, glucosone and hydrogen perox-

ide65,66. These enzymes have been categorized67 into

three classes depending on the substrate specificity:

(i) active mostly on α-fructosyl amino acids (i.e.,

amino acids glycated on backbone amines), (ii) active

mostly on ε-fructosyl amino acids (i.e., amino acids

glycated on side-chains amine) and (iii) similar activi-

ty on either α- or ε-fructosyl amino acids. The most

promising enzymes for protein deglycation are those

active on amino acids side chains (ε-fructosamine),

due to the larger number of potential glycation sites.

However, despite the fact that from the first isolation of

Amadoriase68 over a dozen similar enzymes have been

reported67, none has shown significant activity on intact

proteins, even after mutagenesis experiments69,70. One

of the limiting factors in the development of deglycating

enzymes with expanded substrate has been the uncer-

tainty on their overall folding and conformation of active

site. This limitation has been partly relieved by the find-

ing of the crystal structure of Amadoriase II from As-

pergillus fumigatus71, possibly paving the way for the

development of AGEs treatments.

A Summary

Collagen crosslinks strongly influence the mechanical

and biological function of tendon tissue. While certain

types of collagen crosslinks are essential to proper

function, others can adversely affect tissue health. In

this review, we attempted to distinguish crosslinks
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Figure 2. Crosslinking by AGEs induces various physical changes in type-I collagen dominated tissues. In the left-most pan-

els, it can be seen that incubation of rat tail tendon fascicles in high concentrations of metabolite methylglyoxal (MGO) clear-

ly affects tissue mechanics72. Closer investigation reveals that while tissue elasticity is only slightly affected, more dominant

physical changes are observed in the viscoelastic properties of these tissues, their mode of tensile failure, and their resis-

tance to thermal breakdown. All shown results has been obtained in research conducted ethically according to international

standards73.



that promote tissue strength, stiffness, and resistance

to failure, from the non-enzymatic crosslinks that are

associated with progressive collagen glycation in

ageing and diabetes. Concerning the last class of

crosslinks, we discussed possible therapeutic strate-

gies to restore healthy tendon matrix mechanics. 
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