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Abstract 

Collagen, the main component of mammal skin, has been traditionally used in leather manufacturing for thousands 
of years due to its diverse physicochemical properties. Collagen is the most abundant protein in mammals and the 
main component of the extracellular matrix (ECM). The properties of collagen also make it an ideal building block for 
the engineering of materials for a range of biomedical applications. Reproductive medicine, especially human fertility 
preservation strategies and reproductive organ regeneration, has attracted significant attention in recent years as it is 
key in resolving the growing social concern over aging populations worldwide. Collagen-based biomaterials such as 
collagen hydrogels, decellularized ECM (dECM), and bioengineering techniques including collagen-based 3D bio-
printing have facilitated the engineering of reproductive tissues. This review summarizes the recent progress in apply-
ing collagen-based biomaterials in reproductive. Furthermore, we discuss the prospects of collagen-based materials 
for engineering artificial reproductive tissues, hormone replacement therapy, and reproductive organ reconstruction, 
aiming to inspire new thoughts and advancements in engineered reproductive tissues research.
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1 Introduction
Collagen is an important renewable resource that has 
been used for thousands of years in leather manufac-
turing. To turn animal hide into wearable leather, a 
complex and scientific preparation process is required, 
where plant tannins or metal ions are used to crosslink 
the active groups in collagen fibers. This process cre-
ates a more porous internal microstructure, reduces the 
bonds between collagen fibers, reduces leather expan-
sion in water, improves the moisture and heat resistance, 
and also improves the chemical corrosion resistance [1]. 
Additionally, the processes and materials used in leather 
making can provide fundamental inspiration and guide-
lines for further developing biomaterials based on colla-
gen or collagen derivatives (e.g., gelatin) [2]. So far, more 
than 29 types of collagen molecules have been identified 
and studied, which together provide a powerful toolbox 
for the preparation of multifunctional biomaterials [3]. 
Due to the high biocompatibility and versatile chemical 
properties, collagen has been widely used in the prepara-
tion of biomaterials and the treatment of various diseases 
[4].

One of the most concerning issues for societies 
around the world is population aging. Recent environ-
mental and social structural changes have led to the 
rapid decline of human fertility and accelerated the 
global demographics shift towards an aging popula-
tion. Population aging tends to lower both labor-force 
participation and savings rates, which together raise 
concerns about slowing economic growth in the future. 
Though behavioral responses (for example, greater 
female labor-force participation) and policy reforms 
(for example, an increase in the legal age of retirement) 
can mitigate the economic consequences of an older 

population, the key to resolving the growing issue of 
population aging in a sustainable future is to increase 
fertility rates and birthrates. Currently, around 8-12% of 
reproductive-aged couples suffer from infertility world-
wide, of which women contribute to approximately half 
of the cases [5]. Over the past few decades, reproduc-
tive medicine has developed rapidly, with the intro-
duction of in  vitro fertilization (IVF) in 1978 [6], the 
cryopreservation of human oocytes in 1986 [7], intra-
cytoplasmic sperm injection (ICSI) in 1992 [8], and 
the in  vitro maturation (IVM) of oocytes in 1994 [9]. 
Meanwhile, there has also been remarkable progress in 
the transplantation of reproductive organs, including 
ovary [10], uterus [11], and vagina [12] transplantation. 
Novel materials engineering approaches are needed to 
facilitate continued progress in this space and collagen-
based biomaterials have been applied in the recovery 
and regeneration of injured or damaged reproductive 
tissue [13] and contraception [14, 15].

In this review, we aim to comprehensively summarize 
and discuss the current progress and future possibili-
ties of collagen-based materials for reproductive med-
icine (Fig.  1). Besides, gelatin, a derivative of collagen 
generated through hydrolyzing the natural triple-helix 
structure into single-strand polypeptides, is included in 
this review due to its collagen-like properties and high 
potential in tissue engineering. This review highlights 
the interfaces between regenerative biomaterials and 
traditional leather science. Since collagen and tanning 
chemistry have been used throughout human history 
for thousands of years, the experience and techniques 
from leather science can provide fundamental guide-
lines and inspiration for the design and engineering of 
the next generation of reproductive biomaterials.

Graphical abstract
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2  Collagen‑based materials in reproductive 
medicine

Collagen protein has a highly complex and hierarchical 
conformation, which is organized as a quaternary struc-
ture, where a triple helix super secondary structure is 
the most defining feature of collagen (Fig.  1c). The pri-
mary structure of collagen is characterized by the fixed 
presence of glycine (Gly), which is found in every amino 
acid triplet. Proline (Pro) and hydroxyproline (Hyp) are 
also frequently found, as Gly-Pro-Hyp is the most com-
mon sequence in collagen (approximately 12%). Addi-
tionally, Gly-X-Hyp and Gly-Pro-Y sequences together 
account for another 44% of sequences with the remain-
ing 44% being Gly-X–Y sequences [16]. The α-chains are 
formed by repetitions of the tripeptide, with a triple-hel-
ical domain in the middle, and two non-helical domains 
at either end of the helix. Three parallel α polypeptide 
chains coil around each other to form the triple helix 
structure, which is approximately 300 nm in length and 
1.5  nm in diameter and is the fundamental structure of 
collagen [17, 18]. Collagen fibrils are formed by the self-
assembly of collagen molecules through a quarter-stagger 
package pattern of five triple-helical collagen molecules, 
where the overlap and gap regions between these col-
lagen molecules result in the ~  67  nm D-periodicity of 

collagen fibers [17]. Here, we outline some major models 
and applications of collagen-based materials in reproduc-
tive medicine. We aim to provide a clear understand-
ing of the benefits of collagen-based materials so that 
there can be further improvement in reproductive tissue 
engineering.

2.1  Collagen hydrogel scaffolds
Hydrogels are three-dimensional (3D) polymer network 
structures with high water content, in which the polymer 
chain maintains structural integrity through physical and 
chemical crosslinking. Hydrogels are widely used in bio-
technology and medicine to deliver cells, drugs, or bio-
logically active molecules, and are also regularly used in 
cell culture. Cells can be cultured atop a two-dimensional 
(2D) hydrogel or embedded in a hydrogel as a more com-
plex 3D culture system [20]. Collagen hydrogel is one of 
the most used naturally derived hydrogels owing to its 
physical, mechanical, and biological properties. Collagen 
hydrogels have high water content (over 99%) and dem-
onstrate the ability to gel, swell, self-aggregate, and can 
be enzymatically degraded [21]. Moreover, they can pro-
vide a relatively realistic microenvironment mimic ECM, 
which allows cell adhesion, proliferation, differentiation, 
and protein sequestration. However, collagen hydrogels 

Fig. 1 a, b Illustration of leather and representative examples of leather tanning mechanisms. c Schematic drawing of the hierarchical structures of 
collagen [19]. Reproduced with permission from [19]. d Collagen-based materials and their use in reproductive medicine
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are not always ideal as scaffold materials because of their 
weak mechanical strength due to rapid degradation rate 
in biological environments, opacity, and high shrinkage 
[22]. It is therefore often necessary to improve the overall 
performance of collagen hydrogels for tissue engineering.

Crosslinking collagen with other materials (e.g., chi-
tosan [23], polyvinyl alcohol [24], alginate [25], hyalu-
ronic acid [26], polyethylene glycol [27], and fibrin [28]) 
can significantly enhance the mechanical and biological 
stability of collagen hydrogels. In addition, gelatin is a 
derivative of collagen generated through heat or chemi-
cal treatment [29] via hydrolyzing the natural triple-helix 
structure into a single-strand polypeptide. Gelatin retains 
the cell-binding regions and the biological properties of 
collagen and is highly water-soluble, biocompatible, bio-
degradable, and has low immunogenicity [30, 31] mak-
ing it promising in tissue engineering. To date, there 
have been many attempts to utilize collagen hydrogels in 
reproductive medicine and tissue engineering. For exam-
ple, one study encapsulated the telomerase immortalized 
human endometrial stromal cells in a collagen I hydro-
gel and treated it with in vitro hormone exposures. The 
results suggested that the engineered endometrial stroma 
could mimic the natural morphological and biochemi-
cal changes occurring during secretory and menstrual 
phases of the menstrual cycle [32]. Another study cul-
tured ovarian follicles in collagen I hydrogel and found 
that the density and elasticity of the hydrogel could influ-
ence follicle survival, growth, development, and hormone 
production, along with oocyte maturation and ovulation 
[33]. One study applied a gelatin hydrogel, specifically a 
pue-loaded gelatin methacrylate (Pue@GelMA) hydro-
gel, in pelvic organ prolapse (POP) models. This mate-
rial could alleviate inflammation by reducing the level of 
inflammatory factors and accelerating the reconstruc-
tion and regeneration of the pelvic floor fascia [34]. Still, 
other studies have reported that transplantation of stem 
cells with collagen scaffolds [35] or the transplantation of 
encapsulated autograft ovarian tissue fragments in fibrin-
collagen hydrogels [36] helps ovarian survival and recov-
ery. Therefore, collagen hydrogels can be utilized in many 
fields, including in vitro 3D tissue culture, and the recon-
struction and transplantation of reproductive tissues and 
organs.

2.2  Decellularized ECM
ECM generally refers to the non-cellular substances 
surrounding the cells in tissues or organs, and mainly 
consists of structural substances (e.g., collagen, elastin, 
polysaccharides, and proteoglycans) and functional mol-
ecules (e.g., growth factors, cytokines, chemokines). ECM 
plays an essential role in cell proliferation, differentiation, 
maturation, cell communication, homeostasis, immunity, 

and many other biological processes [37]. dECM can be 
obtained by removing the cellular components of tissues 
or organs while retaining the 3D structural and biochem-
ical components of the ECM [38]. Different methods can 
be used to process dECM, including mechanical, chemi-
cal, and enzymatic treatment [38]. Moreover, dECM can 
be modified by physical and chemical crosslinking using 
chemical crosslinking agents (e.g., carbodiimide (CDI), 
epoxy compounds, glutaraldehyde, and hexamethylene 
diamine carbamate (HMDC)) and natural (e.g., genipin 
(GP), tannic acid, proanthocyanins (PC), and nordihy-
droguaiaretic acid (NDGA)) crosslinking agents [39–41] 
to generate various materials (e.g., powders, patches, 
and hydrogels) [38]. Some consider dECM to be the best 
choice for tissue engineering among different hydrogels 
because it has the natural structure and composition of 
individual tissue and can thus facilitate reseeding cells 
and cellular reorganization [42].

dECM has been widely applied to engineer repro-
ductive tissue and retain its structure and function. For 
example, culturing ovarian cells onto the dECM scaffold 
allows cells to reconstruct follicle-like structures, pro-
duce hormones, and even initiate puberty after trans-
plantation, thus preserving and reestablishing female 
fertility [43–53]. For uterus engineering, decellularized 
endometrial tissue has been repopulated with endome-
trial cells successfully, where the viability, proliferation, 
and hormonal response of endometrial cells have been 
restored [44, 54–67]. The decellularization of the pla-
centas also has extensive applications in regenerative 
and reproductive medicine [68–70]. Overall, dECM has 
been widely applied as a scaffold of choice in reproduc-
tive tissue engineering, yet it is challenging to restore the 
mechanical strength of dECM and postpone the rapid 
degradation in vivo while maintaining the structural and 
biochemical function.

2.3  Collagen‑based bioinks for 3D printing 
and bioprinting

Over the past 20  years, 3D printing has been widely 
applied in biomedicine for medical devices and instru-
ments, and in tissue regeneration, cell culture, and drug 
discovery and development [71]. 3D printed scaffolds for 
tissue engineering are porous, polymeric, cell-free scaf-
folds used for subsequent cell seeding, which are of high 
accuracy and complexity, and can be produced rapidly 
[72, 73]. While 3D printing is a cell-free technology, 3D 
bioprinting is characterized by using cell-laden ‘bioinks’ 
to directly build engineered tissues and organs [74]. 3D 
bioprinting has various advantages, including geometri-
cal freedom, automation, standardization reproducibility, 
repeatability, realistic microenvironments, and custom-
izability [75]. Therefore, compared with conventional 
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tissue engineering methods, 3D bioprinting can accu-
rately deposit cells and biomaterials together into pre-
cisely controlled architectures.

Bioinks are vital for 3D bioprinting because they 
should contain the necessary conditions to provide both 
structural and biochemical support for cell viability and 
growth. Therefore, bioinks need to have high biocompat-
ibility, printability, and low antigenicity. The most com-
mon components of bioinks include ECM proteins (e.g., 
collagen, gelatin), functional molecules (e.g., growth 
factors, cytokines), and cells [76]. Currently, collagen, 
gelatin, and ECM hydrogels are extensively used as com-
ponents of bioinks in 3D bioprinting of different tissues 
because of their high biocompatibility, printability, and 
workability. Nevertheless, these biomaterials need to be 
modified (e.g., crosslinking) and mixed in suitable pro-
portions to improve the mechanical strength and biologi-
cal properties before being used as bioinks [2].

Recently, there are emerging studies about the appli-
cation of 3D bioprinting in reproductive medicine. For 
example, one study used a gelatin bioink scaffold and iso-
lated small follicles to create a bioprosthetic ovary. They 
found it could survive, be vascularized, and even preserve 
ovarian function (i.e., ovulation) and fertility after trans-
plantation [77]. Another study used a gelatin/sodium 
alginate hydrogel as a bioink for 3D bioprinting a human 
induced pluripotent stem cell (iPSC)-derived mesenchy-
mal stem cell (MSC)-loaded scaffold to regenerate endo-
metrium. This material could improve the recovery of 
the endometrial histomorphology and aid the regenera-
tion of stromal, epithelial, and endothelial cells. Moreo-
ver, this not only enhanced endometrial receptivity but 
also restored the ability of implantation and pregnancy 
maintenance of the injured endometrium [78]. Another 
study successfully applied an acellular vagina matrix 
(AVM) hydrogel and seaweed gelatin/alginate hydrogel 

as bioinks in 3D bioprinting biomimetic vaginal tissue, 
which showed good biocompatibility, vascularization, 
epithelization, and differentiation [79]. Similarly, 3D bio-
printing of collagen-based material bioinks could be uti-
lized for engineering placenta models [80]. Still, there is a 
long road ahead for 3D bioprinting reproductive tissues 
and organs, and bioinks based on collagen-based materi-
als have yet to be fully explored.

3  Current applications of collagen‑based 
biomaterials

Current applications of collagen-based biomaterials in 
reproductive medicine and engineered reproductive tis-
sues are extensively summarized in Table  1. In general, 
collagen-based biomaterials demonstrate various advan-
tages in the field of reproductive medicine as they can 
suspend and support isolated reproductive function cells, 
have high biocompatibility, and are biodegradable in vivo 
and in vitro.

3.1  Ovarian tissue engineering using collagen‑based 
biomaterials

With the development of modern medical technology, 
the survival period of young cancer patients has been 
significantly extended, however, chemotherapy and radi-
ation therapy are generally gonadotoxic. Therefore, fertil-
ity preservation treatment is necessary for young cancer 
patients who have not yet had children. Re-transplanta-
tion after cryopreservation of ovarian tissue is the only 
option to preserve fertility in prepubertal female patients 
who required immediate cancer therapy. In addition, for 
some fertile female patients, re-transplantation of ovarian 
tissue can preserve the endocrine function of the ovary 
to reduce the risk of osteoporosis, cardiovascular disease, 
and vasomotor symptoms. Meanwhile, patients who suf-
fer from decreased ovarian reserve due to the surgical 

Table 1 Overview of recent studies in collagen-based materials in reproductive medicine and engineered reproductive tissues

Collagen‑based material Tissue Application References

Hydrogel Ovary Follicle encapsulation and culture [33, 81–94]

Uterus Endometrial cell culture [95, 96]

Fallopian tube 3D organoid culture [97]

dECM Ovary Follicle culture and transplantation [46, 47, 49, 50, 98–100]

Uterus Endometrial, myometrial cell culture, and transplantation [55–58, 62, 66]

Placenta Generate scaffolds [70, 101, 102]

Cervicovaginal Cervicovaginoplasty [12, 13, 103–106]

Collagen-based bioink Ovary Follicle culture and transplantation [77]

Placenta Bioengineered placenta model [80, 107]

Pelvic floor Mesh encapsulation and pelvic floor reconstruction [108]

Collagen coating Mesh Pelvic floor Mesh encapsulation and pelvic floor reconstruction [108–111]
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treatments of benign ovarian tumors and endometriosis 
could also benefit from fertility preservation treatment.

However, ovarian tissue transplantation faces sev-
eral problems in clinical practice. The most prominent 
problem is the risk of disease metastasis and recurrence 
caused by the potential reintroduction of cancer cells and 
an initial ischemic injury of ovarian tissue after trans-
plantation [112, 113]. Engineered reproductive tissues 
provided promising solutions. In the process of ovarian 
transplantation, any malignant cells should be separated 
so that only core functional cells are transplanted.

The essential functional component of the ovary is the 
ovarian follicle in the cortex, and collagen-based mate-
rials have been applied to encapsulate ovarian follicles 
and provide the extracellular support structure for cell 
growth. The encapsulated oocytes and related somatic 
cells could successfully survive and secrete hormones 
in  vitro and the mouse transplantation model. The col-
lagen-based bio-materials currently applied for encap-
sulating follicles are hydrogels primarily comprised of 
Matrigel (a natural hydrogel secreted by mouse sarcoma 
cells), alginate (a natural hydrogel derived from algae), 
and poly(ethylene glycol) (Fig.  2). It has been reported 
that macroporous alginate scaffolds layered with affinity-
bound bone morphogenetic protein-4 could successfully 
mimic the ovary microenvironment. Porcine primordial 
follicles could be cultured in these scaffolds to the pre-
antral stage and retain their hormone-secreting func-
tion in an immunodeficiency mice xenotransplantation 
model [93]. Furthermore, isolated ovarian follicles have 
been seeded in alginate-matrigel matrix scaffolds and 

transplanted into mice models. After transplantation, the 
matrix scaffolds were observed to degrade and allowed 
vascularization around the follicles [91].

During encapsulation and transplantation, hydrogels 
can exhibit beneficial support for cells. For example, a 
microfluidic microencapsulation hydrogel encapsulation 
model was reported to successfully mimic the mechani-
cal characteristics of the mammalian ovary in  vitro. A 
softer 0.5% collagen hydrogel core mimicked the medulla 
of the ovary, while a harder, and slowly degradable 2% 
alginate hydrogel shell mimicked the rigid cortex of the 
ovary. This 3D culture model could effectively transport 
oxygen and nutrients to the capsulated ovarian follicles 
(Fig.  2). Finally, the controlled degradation of the cap-
sule could be achieved by alginate lyase encapsulated in 
PLGA microspheres [114].

Other strategies are also promising, including the use 
of dECM to assist human ovarian tissue auto-re-trans-
plantation. For example, the dECM materials called 
AlloDerm (LifeCell Corp.) have been applied in human 
ovarian tissue re-transplantation following cryopreser-
vation. After the re-transplantation, the patient gained 
IVF live-birth with subsequent hormone secretion until 
2-year after transplantation. AlloDerm is a decellularized 
product derived from cadaveric or xenographic skin that 
can be used in tissue reconstruction and plastic surgery 
[115]. It is possible to construct a decellularized human 
ovarian scaffolds model from ovarian tissue donated by 
patients with malignant tumors, and by removing all of 
the cells from the ECM (including malignant cells), the 
collagen content of the ovary could be preserved (Fig. 3). 

Fig. 2 Collagen-encapsulated follicle. a Micrographs of an early secondary preantral follicle encapsulated in a collagen core with an alginate shell. b 
Quantitative data shows the effect of the core (0.5% collagen) and shell (2% non-oxidized alginate) materials is the highest. Collagen (Col), alginate 
(Alg), oxidized-alginate (O-alg). Reproduced with permission from [114]



Page 7 of 15Chen et al. Journal of Leather Science and Engineering             (2022) 4:3  

Human ovarian stromal cells and pre-antral follicles 
could be reseeded to the scaffolds and cultured in  vitro 
and transplanted subcutaneously to immunodeficient 
mice. As a result, human ovarian stromal cells were 
observed to recellularize the scaffolds, and about 39% of 
pre-antral follicles grew into antral stages without malig-
nancy [48]. It is speculated that all of these dECM mod-
els act as a biologic scaffold by assisting epithelialization, 
neovascularization, and fibroblast infiltration, however, 
there is limited research into the exact mechanisms, and 
supporting data is still needed.

The biggest practical drawback of microfluidic hydrogel 
encapsulation technology is the limited number of folli-
cle cells encapsulated. When applied to large animals and 
humans, an ideal biological scaffold needs to carry a large 
number of follicular cells while achieving the vasculari-
zation, infiltration of nutrients, discharge of follicles, and 
secretion of hormones. Emerging additive manufactur-
ing techniques such as 3D printing microporous hydro-
gel scaffolds (Fig. 4), which serve as pore architecture to 
encapsulate ovary follicles, are alternative approaches 
that have facilitated the development of bioengineer-
ing. Controlled microporous architectures can be con-
structed by 3D printing thermally regulated crosslinked 
gelatin, where interestingly 60° angle scaffolds were the 
most efficient for cell growth and maturation When 
transplanted to surgically sterilized mice, the artificial 3D 
printed follicle-seeded scaffolds became highly vascular-
ized and started to ovulate and secrete hormones. Next, 
the healthy delivery of mice was reported following natu-
ral mating [77]. Moreover, Jakus AE et al. elaborated that 
the dECM “bioink” from bovine ovarian is usable in 3D 

printing (Fig.  5), indicating the 3D printing technology 
might be promising in future human fertility reservation 
applications [116].

3.2  Uterine tissue engineering using collagen‑based 
biomaterials

The treatment of infertility has been partially resolved 
with the emergence of IVF technology. However, IVF can 
only resolve infertility due to fallopian tube and ovulation 
factors. Surrogacy on the other hand, which is illegal in 
most countries due to ethical controversy, is currently the 
only option to resolve absolute uterine infertility (absent 
or non-functional uterus), which has a prevalence of 
3–5% in all women [117].

Owing to the rapid development of materials in recent 
years, the exploration of a tissue-engineered artificial 
uterus offers some hope to patients suffering from uterine 
infertility. Research on engineering uterine tissue is gen-
erally in the exploratory stage and mainly applies recellu-
larized uterine dECM scaffolds in animal transplantation 
models. The dECM scaffold is produced by perfusing Tri-
ton X-100 and Sodium dodecyl sulfate (SDS)/Dimethyl 
sulfoxide (DMSO) into the uterus. Immunofluorescence 
staining of the dECM scaffold shows that the collagen 
content remains intact after this process [56], after which 
recellularization procedures can be achieved by injecting 
stem cells into dECM scaffolds. In a pilot study, the uter-
ine epithelial cells were artificially migrated into a dECM 
scaffold. The modified scaffold was transplanted into an 
artificially defective murine uterus. An intact epithe-
lial layer formed and the migration and regeneration of 
myometrial and stroma cells were observed sequentially, 

Fig. 3 dECM of human cortical ovarian tissue. a PAS staining of human cortical ovarian tissue. b Immunofluorescent staining (collagen in 
green and DAPI in blue) of human cortical ovarian tissue. (Periodic Acid-Schiff (PAS) stain is mainly used to detect carbohydrates in tissues; 
4’,6-diamidino-2-phenylindole (DAPI) is a fluorescent dye that can bind to DNA, which is mainly used for cell staining). Reproduced with permission 
from [48]
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indicating that the application of the dECM was a prom-
ising strategy for the regeneration of epithelium and myo-
metrium in the uterus [66]. Pregnancy was even reported 
in another study that transplanted dECM scaffolds 

recellularized with endometrial and myometrial primary 
cells to repair native rat uterine tissue defects in vivo [55]. 
Similarly, collagen scaffolds layered with human umbili-
cal cord-derived mesenchymal stem cells have been used 

Fig. 4 Ovarian follicles cultured in 3D printed microporous gelatin scaffolds. a Macroscopic view of 3D printed microporous gelatin five-layered 
scaffolds printed with a 100 mm nozzle. b 3D reconstructions of a confocal fluorescence image of 60° angle gelatin scaffolds. c Confocal 
fluorescence image of follicles seeded in pores after 2 days of culture. d Electron micrograph of an ovarian follicle wedged underneath 60° angle 
gelatin scaffolds after 2 days of culture. Reproduced with permission from [77]

Fig. 5 Re-transplantation of “tissue paper” made from bovine ovarian dECM tissue. Reproduced with permission from [116]
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to reconstruct endometrium and preserve fertility in an 
induced murine uterine defect model [13]. In addition, a 
whole porcine uterus has been decellularized while main-
taining the vascular network and preserving the dECM 
(Fig. 6). These researchers also successfully recellularized 
the small acellular disk scaffolds with human side popula-
tion stem cells [56].

3.3  Cervicovaginal tissue engineering using 
collagen‑based biomaterials

The vaginal matrix is composed of various proteins such 
as collagen, microfibrils, and elastin. Treatment of con-
genital absence of the vagina, vaginal deformity, and 
acquired vaginal trauma have been challenging owing to 
the lack of compatible and useful biomaterials. Autolo-
gous tissues such as bladder mucosa and full-thickness 
skin grafts have been used in vaginal reconstruction. 
However, extra trauma caused by obtaining autologous 
tissue is a significant issue for patients. The develop-
ment of artificial materials such as engineered acellular 
intestinal submucosa segments [12], collagen, or dECM 
layered scaffolds [109] provides promising solutions. 
Engineered scaffold with the commercial name ADM 
(QingYuan WeiYe Biotech, Beijing, China) that is lay-
ered with critical dECM components containing col-
lagen, elastin, and proteoglycans has been applied to 53 
patients with Mayer-Rokitansky-Küster-Hauser (MRKH) 
syndrome, a disease of congenital absence of the uterus 
and vagina. As a result, follow-up showed near-normal 
sexual function and satisfaction for all patients [103]. 
Acellular porcine small intestinal submucosa (SIS), which 
is primarily composed of non-crosslinked collagen, gly-
cosaminoglycans, proteoglycans, and glycoproteins [118], 
has also been successfully applied to 8 patients with cer-
vicovaginal agenesis or dysgenesis and 2 patients with 

MRKH syndrome [104, 105]. The collagen-based mate-
rials showed superior biocompatibility and did not pro-
duce immunologic rejection during the application. In 
addition, it spared patients from the additional trauma 
of traditional reconstruction through autologous tis-
sues vaginoplasty. Moreover, collagen-based electrospun 
materials have been applied to tissue engineering and 
wound healing. Electrospinning of type I collagen scaf-
folds leads to similar materials to native dermal ECM that 
are capable of supporting angiogenesis and epithelializa-
tion, and show greater resistance to tissue contraction, 
which makes them promising for vaginal reconstruction 
[119].

3.4  Pelvic reconstruction using collagen‑based 
biomaterials

It is estimated that more than 25% of women suffer from 
POP, a disease defined as the herniation or descent of 
pelvic organs into the vagina, of which the estimated 
lifetime risk of surgery is about 19% [120]. Synthetic 
polypropylene (PP) meshes have been widely applied in 
POP reconstructive surgery. However, this risks adverse 
events such as foreign body tissue response, chronic 
pain, tissue contracture, and mesh exposure. To mini-
mize adverse effects, numerous studies have designed 
collagen coatings to modify PP mesh. For example, less 
erosion and inflammation were reported when coating 
the PP mesh with acellular porcine collagen, which could 
decrease mesh tissue adhesion to the surgical wound, 
prevent severe initial inflammatory response, and dimin-
ish the risk of chronic pain and mesh exposure [109, 110]. 
In addition, ECM coating can be applied to improve the 
biocompatibility of mesh owing to its degradable prop-
erties, which facilitate wound tissue remodeling and 
tissue formation rather than tissue fibrosis [111]. In 

Fig. 6 dECM of porcine uterus. a Macroscopic picture of porcine uterine horns after decellularization (DC). b1, b2 Immunofluorescence staining of 
collagen I (green signal of b1) and collagen IV (green signal of b2) after DC. (Control: uterus before DC. P1: freeze/thawed samples after DC. P2: Fresh 
samples after DC). Reproduced with permission from [56]
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addition, PP materials coated with collagen type I and 
III were reported to facilitate the adhesion and prolifera-
tion of human urothelial cells, which is promising in the 
application of urethral reconstruction [121]. However, 
mesh erosion is still a difficult problem since PP mesh is 
non-degradable. Therefore, a biodegradable, more bio-
compatible biomaterial is in urgent need. Recently, an 
electrospun polycaprolactone resorbable mesh showed 
no erosion in an ovine model [122]. Inspired by the suc-
cessful application of collagen-based electrospun mate-
rials in skin tissue and musculoskeletal engineering, we 
hypothesize that collagen-based electrospinning is prom-
ising for improving biocompatibility and biodegradability 
in pelvic reconstruction.

3.5  Regenerative medicine using placenta ECM
The placenta contains an abundance of ECM and is rela-
tively easy to acquire as stem/progenitor cells are dis-
carded after delivery. It is assumed that placenta ECM 
represents a valuable resource for regenerative medicine, 
especially for tissue engineering, because of its ample 
bioactive molecules essential for regeneration [102]. 
However, the application of placental ECM is still in its 
infancy.

4  Discussion
Reproductive medicine, especially human fertility pres-
ervation strategies and reproductive organ regeneration, 
has gathered increasing attention because of the aging 
populations seen globally. Collagen, a renewable resource 
with a wide range of sources, provides an ideal choice for 
solving clinical problems in regenerative medicine. The 
principles of leather manufacturing can inspire resolv-
ing the current challenges in the engineering of collagen-
based regenerative materials. Moreover, the chemistry of 
leather tanning may also provide a guideline in the fun-
damental design of regenerative materials to better meet 
clinical requirements in regenerative medicine.

4.1  Tanning chemistry‑based inspiration
The mechanism of leather tanning can inspire the engi-
neering of materials with strong mechanical properties. 
One of the most serious shortcomings of collagen-based 
biomaterials is that the weak mechanical properties 
result in the loss of the collagen porous structure. This 
property makes it impossible for current collagen-based 
materials to truly replace the ECM to support cell growth 
and other functions. The leather manufacturing process 
is the process of enhancing the mechanical properties 
of leather and maintaining the collagen structure. This 
suggests that through a similar process to leather manu-
facturing, the mechanical properties of collagen could 
be improved while ensuring the physiological activity to 

ensure that collagen-based biomaterials can better meet 
the needs of regenerative medicine.

In addition, the metal-tannin combination process 
can impart multiple functions to biomaterials due to the 
coordination property of polyphenols (tannins). Metal-
phenol networks (MPNs) have been widely used in bio-
medical research, and have shown great application 
potential in the fields of drug-controlled release and cell 
interface engineering. The shortcomings of cytokines, 
DNA drugs, and RNA drugs are that they are easily 
degraded and inactivated, which limit their application 
in the field of reproduction. Therefore, designing specific 
metal polyphenol-containing collagen-based biomate-
rials according to clinical needs is expected to further 
expand the application range of collagen materials in the 
field of reproductive medicine.

4.2  Collagen‑based soft electronic materials
Collagen-based biomaterials show unique advantages, 
such as superior biocompatibility and biodegradability, 
potentially useful for preparing soft electronic materi-
als. Health monitoring has a wide range of applications 
in reproductive medicine. Collagen-based soft electronic 
materials, therefore, have great application prospects in 
the field of health monitoring.

4.3  Fertility preservation strategies and hormone 
replacement therapy (HRT) perspectives

Re-transplantation after cryopreservation of ovarian 
tissue is the only option to preserve fertility in prepu-
bertal females and patients who require immediate can-
cer treatment. However, the initial tissue ischemia after 
re-transplantation is also a problem that plagues physi-
cians. Collagen-based tissue engineering provides a new 
perspective in aiding the initial revascularization process 
and the isolation of malignant cells in ovary re-transplan-
tation. Artificial collagen-based biomaterials that encap-
sulate ovarian follicles with hormone secretion functions 
are expected to serve as a more precise HRT, which is 
expected to be much closer to the natural female physi-
ological state and with fewer side effects.

4.4  Tissue regeneration, organ reconstruction, 
and artificial uterus perspectives

One of the most promising new frontiers in current 
medicine is regenerative medicine. It is hoped that in 
the future, the development of engineered tissue can 
provide fewer adverse reactions such as rejection, tis-
sue contracture, and scar hyperplasia. Moreover, the 
regeneration of nerve cells in engineered tissue is 
promising for regaining sexual sensation for patients 
suffering from congenital absence of the vagina, vagi-
nal deformity, and acquired vaginal trauma. Also, a 
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tissue-engineered artificial uterus provides hope to 
patients suffering from uterine infertility.

5  Conclusion
In this review, we introduced the collagen-based mate-
rials used in reproductive medicine, including collagen 
hydrogel scaffolds, decellularized ECM, and collagen-
based bioinks. Additionally, five current applications of 
collagen-based biomaterials (i.e., ovarian tissue engi-
neering, uterine tissue engineering, cervicovaginal tis-
sue engineering, pelvic reconstruction, and placenta 
ECM) were reviewed comprehensively. Finally, we dis-
cussed the relationship between the exploration of col-
lagen-based materials used in reproductive medicine 
and the leather industry. This review will hopefully pro-
vide integrated knowledge and interesting perspectives 
for researchers committed to conducting cutting-edge 
studies and promoting the development of artificial 
materials in reproductive medicine.
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