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Fundamental changes of agriculture and food production are

inevitable. Providing food for an increasing population will be a

great challenge that coincides with the pressure to reduce

negative environmental impacts of conventional agriculture.

Biotechnological manufacturing of acellular products for food

and materials has already been piloted but the full profit of cellular

agriculture is just beginning to emerge. Cultured meat is a

promising technology for animal-based proteins but still needs

further development. The concept of plant cells as food offers a

very attractive alternative to obtain healthy, protein-rich and

nutritionally balanced food raw material. Moreover, cultured

microbes can be processed into a wide range of biosynthetic

materials. A better control over structural properties will be

increasingly important in all cultured cell applications.
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Introduction
Transforming the current food system simultaneously

towards the goals of providing healthy diets and environ-

mental sustainability constitutes one of the grand challenges

of current times. Achieving these targets is a fundamental

prerequisite to meet the UN Sustainable development Goals

(SDGs) (https://www.un.org/sustainabledevelopment/

sustainable-development-goals/). Even though global food

production of calories so far kept pace with population

growth, there is on the one hand still a significant gap in

providing sufficient food and on the other hand, there are

concurrent problems with low-quality diets causing micro-

nutrient deficiencies and diet-related obesity [1��]. It appears
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unlikely that conventional agriculture alone can cope with

the huge challenges ahead. Current estimates project 60%

higher global food requirements by 2050 [2] while only 2%

more agricultural land is available ultimately covering 40% of

total land area. Contrary to common belief, human activity,

including domestication of livestock, adaptation of agricul-

ture and the industrial revolution causing a dramatic increase

in the human population, has actually decreased total

biomass on Earth by a factor of two rather than increasing

it [3]. This is mainly due to forest management and grazing

[4]. Crops account only for ca. 2% of all plant biomass on the

globe [4]. This figure includes non-food crops, too, and shows

that the conflict of growing either food or biomass for

materials such as fibre — and more recently for fuel — is

serious [5]. In conclusion, it is apparent that efficient alter-

natives for food and material production are desperately

needed.

Industrial biotechnology holds the key to provide human-

ity with nutritious, safe and healthy food together with

chemicals and innovative materials while minimizing

resource input such as energy, land and water in addition

to gaining seasonal and geographical independence and

reducing waste. Biotechnology in the form of several

waves, that is, the red, green and white biotechnology

has already made a huge impact on the modern society

and economy [6]. Green biotechnology enabled the green

revolution, that is, a massive yield increase of crops

through breeding varieties with, for example, improved

agronomic traits, nutritive value and disease resistance

[7]. The principal focus of the red and white biotechnol-

ogy has been on acellular products, that is, compounds

with pharmaceutical applications, fine and bulk chemicals

with a wide spectrum of uses such as food additives and

supplements, pigments, flavours, aroma components,

polymer building blocks and fuels. More recently, there

has been an increased interest in cellular products to be

used as food, cosmetics and materials. The term ‘cellular

agriculture’ [8] has been proposed, that is, utilization of

cell cultures of the whole variety of host organisms

(Figure 1) for the production of agricultural commodities

rather than production by farmed animals or crops.

In this review article, we focus on the cellular products

that are at this point exclusively non-GM. We refer the

reader to literature outlining production of acellular pro-

ducts mostly in genetically modified microorganisms. An
www.sciencedirect.com
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Schematic representation of cellular agriculture. Host organisms are covering animal, plant and microbial cells. Cellular products with examples

are shown on the left and acellular products with examples on the right.
example for a food ingredient is ovalbumin [9], for

chemicals vanillin [10] and for materials silk proteins [11].

Animal cells
Meat is an important dietary source of many components

supporting growth and development of the human body

and maintaining health over the lifetime. However, the

consumption of especially red meat has lately been asso-

ciated with a high risk of cardiovascular diseases, type

2 diabetes and certain cancers, that is, colon cancer due to

saturated fatty acids and carcinogenic compounds formed

in food processing of red meat. Negative impact caused

by meat-related foodborne illnesses, for example, avian

flu or swine fever as well as ethical issues have also gained

a lot of attention [12].

Animal agriculture is one of the major contributors to

several environmental problems being responsible for

about 10% of greenhouse gas emissions in U.S. alone,

and globally for about 37% of all methane emission [13].

The consequences include climate change, water and

air pollution as well as deforestation. At the same time,

the growing population, increased welfare in the

developing countries and changed dietary practices

have led to a tremendous rise in demand of food

proteins, especially animal-derived proteins, and hence

increased meat consumption. Moreover, especially the

cattle meat production is inefficient as the conversion

rate from feed to animal protein is low, approx. 15%

[14]. Because of the enormous ecological footprint of

livestock, particularly cattle, on the landscape globally,
www.sciencedirect.com 
the food disruption, especially cellular agriculture

offers great opportunities for keeping the environment

healthy.

Artificial meat refers to meat substitutes that can be

divided basically into three categories: meat alternatives

from plants and fungi, meat from GM animals, and cell-

based meat. We deal in this review only with cell-based

meat, also called clean meat, lab-grown meat or in vitro
meat. It is a complex food product comprised of animal

cells - mainly skeletal muscles, fat and connective tissues

such as myoplasts or other microcarriers [15]. The

myosatellite or adipose stem cells are grown in growth

medium outside an animal in a bioreactor. They are

multipotent cells, capable of transdifferentiation, and

therefore need to be reharvested from time to time

[16]. Cell-based meat is genetically identical to conven-

tional animal meat but hard to develop due to structural

complexity. Moreover, the texture that contributes

strongly along the taste is hard to mimic. In fact, ground

meat is far simpler to replicate than steaks, and competi-

tive alternatives will enter the market all the time. The

3D printing might be an option to mimic a steak from

cultured meat [17]. Already now a big trend, although not

new, is to replace animal proteins with biotech-derived

ingredients such as tofu, seitan or tempeh, and more

recently fungal protein product Quorn. However, cell-

based meat may still have an advantage in the long run

from a consumer perspective as it is animal meat. On the

other hand, this is not an option for vegetarians and

vegans.
Current Opinion in Biotechnology 2020, 61:128–134
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The first slaughter-free hamburger based on laboratory-

cultured meat was unveiled in 2013 by the CSO of Mosa

Meat, Professor Mark Post. The cost at that time was

estimated 250 000 s [14]. Since then a lot of interest has

been raised to replace the production of animal agricul-

ture meat by cellular agriculture. This is not an easy task

as the cultured meat needs to have preferably the same

nutritional value as animal-produced beef with similar

taste, flavour, texture and appearance. However, when

the technology advances the costs also fall. The major

problems still are the need to use animals for obtaining

appropriate cells and expensive, animal-derived serum as

a basic component of the growth medium for cell prolif-

eration and differentiation, as well as the scalability of the

process [18�]. The latter is a challenge due to the growth

pattern of the animal cells attached to surfaces. However,

alternative production systems such as producing only

needed animal proteins by microbes, are necessary

because at current prices, revenues of the U.S. beef

and dairy products which today exceed about 400 billion

dollars are estimated to decline by 50% by 2030 [19��]. In

addition, other livestock and fisheries will follow the same

trend. Therefore, the major producers of animal products

are globally at serious economic risk.

Plant cells
The environmental impact (per kg of product) of crop

farming for human consumption is much lower than that

of animal products but in total still accounts for at least one

third of all agricultural impact due to the high production

volumes and larger food loss and waste [20]. Reducing the

environmental footprint is therefore one important driver

to consider industrial biotechnology of plant cells for food

applications. Although life cycle analyses to determine

concretesavings inwaterconsumptionandsoon.are largely

missing, initial studies, concentrating on process optimisa-

tion [21], indicate a significantpotential in cost and resource

reduction. The wide adoption of ‘plant stem cells’, that is,

dedifferentiated plant cells as a source for cosmetic ingre-

dients [22] is strongly driven by consumer demand for

sustainably sourced ingredients, too [23]. Cell culture

technology was a prerequisite to access and exploit rare

plants while securing supply without further endangering

wild populations. Most cosmetic products in this segment

are derived from cell culture extracts but a number of

formulations contain whole cells [24�] and therefore fall

into the cellular agriculturecategorycovered by this review.

Another impulse for the utilization of plant cells as food

originates from nutritional recommendations to increase

dietary intake of plant-based food altogether [1��]. There

is already a strong trend towards substitution of animal

proteins with plant-based alternatives such as soy and

pulses. However, many crops contain small amounts of

certain essential amino acids compared to most animal-

derived proteins [25]. In general, the digestibility of crop

proteins in their natural form is lower than the proteins
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from animal sources [26], which can be due to anti-

nutritional factors [27], interaction and/or physical entrap-

ment with compounds. Interestingly, recent investigations

concerning the nutritional composition of cultured plant

cells revealed very favourable contents of approximately

21–37% dietary fibre, 0.3–1.3% starch, 18–33% sugars as

well as good quality lipids besides 14–19% protein [28��].
The samples showed balanced profiles of nutritionally

essential amino acids exceeding contents of soy protein

isolates and most importantly exhibited differential digest-

ibility, a basis for efficient absorption, depending on species

and processing [28��].

In contrast to animal cell cultures, there is a long history of

plant cell cultures for the production of secondary metab-

olites including food ingredients at scale. Based on the

pioneering work of Haberland describing cellular totipo-

tency [29], rapid technological development took place to

firmly establish methods for heterotrophic cell culture in

bioreactors. First commercial products, mainly secondary

metabolites as pharmaceuticals, appeared on the market in

the 1980s [30]. An impressive case illustrating how techni-

cally advanced plant cell culture is, provides the production

of the anti-cancer drug paclitaxel in 75 000 liter bioreactors

to meet most of the global demand [31]. It is somehow

surprising that the explicit use of entire plant cells as food

has only recently been suggested [32] despite the estab-

lished practice to exploit tissue and organ cultures of

ginseng for food supplement production in Asia [33].

Plant cell culture medium is chemically fully defined and

consists mostly of inorganic ingredients, that is, salts, sugar

(usually sucrose) as carbon source and some low concen-

tration vitamins and phytohormones. It is therefore much

less complex and costly as compared with animal cell

culture medium. Since many cosmetics are already

economically produced from plant cells [24�] it is realistic

that at least luxury food such as, for example, chocolate

made from plant cells [34] will soon follow once suitable

processing methods for the biomass have been established.

Asproofofconcept,wehave processed cell culturesderived

from lingonberry in different ways to showcase the broad

versatility of the raw material (Figure 2).

Plant cells could serve as material constituents, too,

although even less work has been published in this area.

Since plant cells do not adhere to surfaces in cultures but

rather grow as single cells or cell aggregates, tissue-like

3-dimensional structuring of the cells is a major obstacle.

3D printing approaches could lead the way towards

achieving ordered growth [35].

Microbial cells
Whole-cell microbial production of food protein has long

been established and commercialised. Since this so called

‘single cell or myco-protein’ must always undergo proces-

sing due to nutritionally unfavourable high contents of
www.sciencedirect.com
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Figure 2
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Cultured plant cells as versatile raw material for various future food

applications. Center: Lingonberry plant cell culture. Clockwise from

top right to bottom: Acellular products — filtered cells, gelled ‘cubes’,

agarose encapsulated pearls, cell extract. Counter-clockwise from top

left to bottom left: Cellular products — lyophilized powder, structured

‘patties’, structured and dried ‘crisps’ (Photos by Heiko Rischer).

Figure 3
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Headset ‘Korvaa’ demonstrating the use of microbially produced

materials (URL: https://www.fastcompany.com/90354704). The design

demo is made from bioplastics, leather-like mycelium materials,

synthetic spider silk, protein-cellulose foam, and a composite of

mycelium and bacterial cellulose. The headset was designed by Aivan

(www.aivan.fi), and the materials were produced by VTT Technical

Research Centre of Finland Ltd and Aalto University (Photo by

Thomas Tallqvist, courtesy of Aivan).
RNA and since the topic has been rigorously reviewed

before [36] this aspect of cellular agriculture is not

covered here.

Microbes can also be cultivated to make synthetic

materials. In nature, macroscopic materials grown from

microbes, such as biofilms, mushrooms, and lichens, have

little relevance as synthetic structural materials. How-

ever, microbes can be used to produce various polymers

and polymer precursors for materials [37,38]. An emerging

field aims to use the microbial growth process as such for

producing synthetic materials [39]. The challenge is to

control the growth and morphogenesis of the cells to

make tissue-like materials. This material fabrication

using living organisms is often termed as material bio-

fabrication [40] and is related to biofabrication for tissue

engineering and regenerative medicine.

An interesting material example is fungal mycelium which

can be grown into sheets or composite materials [41].

Filamentous fungi grow as long hyphae by tip extension

and branching, and eventually form a fibrillar network [42].

Interestingly, for centuries, humans have used fruiting

bodies of bracket fungi to make leather-like textile materials

[43]. Today, designers [44�] and researchers (Figure 3) are
www.sciencedirect.com 
reviving this almost forgotten art and are able to control the

mycelium growth into desired materials and shapes. In fact,

the company Ecovative Design has pioneered the use of

mycelium as a material component [45]. Fungal mycelium

can be grown into bio-based solid composites, foams, and

leather-like non-woven fabrics [41]. Importantly, many fila-

mentous fungi secrete a range of hydrolytic enzymes for the

breakdown of lignocellulosics and other organic substrates

andthereforeareabletoconvertwastestreams intomaterials.

The fungal cell wall forms a well-connected network and

essentially bears the structural role in the material [46�].
However, the understanding of molecular and genetic

factors affecting hyphae biomechanics is currently

limited. It has been shown that cell wall chitin content

affects material tensile properties [47] and that cell wall

proteins have a role in mycelium density and conse-

quently in material strength [48].

Other microbes have also been shown to form materials.

Alkalitolerant bacterial cells, such as some Bacillus
species, can be cultured to form biomineralized bricks

in a microbially induced calcite precipitation process [49].

Microbial cells and virus particles can also be grown

for biotemplating the synthesis of nanoparticles [50].

Gluconacetobacter can be cultivated to produce very pure

cellulose non-woven films and recently also 3D shapes

[51]. Interestingly, bacterial cellulose films have been

shown to be able to entrap microalgae into a moldable
Current Opinion in Biotechnology 2020, 61:128–134
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hydrogel, demonstrating a synthetic symbiosis between

the two species [52].

It is important to note that the described bottom-up mate-

rial fabrication processes are guided by the genetic infor-

mation of the growing cells. Thus, understanding the

relevant genetic factors will be highly important for the

design ofnovelbiosynthetic functional materials. Advances

on this front have already been demonstrated such as the

growing of adaptive pollutant binding materials [53],

paving the way for engineered living materials [54��].

Conclusions
Biotechnological production of acellular compounds has

already and is still affecting many industries because it

facilitates substitution of conventional processes with

sustainable and economic alternatives. Cellular products

are just beginning to emerge and bear potential to disrupt

food, cosmetics and material production. However, as

these products are more visible for the end-users it is

of outmost importance to ensure consumer acceptance. In

the case of food products, processing to beneficially

modulate flavour and texture needs to be developed.

Safety must be ensured by following respective regula-

tory frameworks for food [55] and cosmetics [56]. Once all

these conditions are met, sustainability is proven, and

economic cases drawn up, then the technology could face

a real breakthrough.
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