
The selective oxidation of organic molecules is fundamentally impor-
tant to life and immensely useful in industry1,2. Among the myriad 
ways by which such reactions may be performed, those catalysed by 
naturally occurring metalloenzymes using molecular oxygen (O2) are 
notable for many reasons. Metalloenzyme-catalysed oxidations often 
exhibit exquisite substrate specificity as well as regioselectivity and/or 
stereo selectivity, and operate under mild conditions through inherently 
‘green’ processes. Moreover, metalloenzymes are sometimes able to alter 
the function of recalcitrant substrates in ways that synthetic chemists 
find difficult to replicate (for example, changing methane to metha-
nol)1,3. For these reasons, combined with the knowledge that metal 
centres in proteins often adopt novel structures and exhibit unusual 
properties that are intrinsically worth examining, bio inorganic chem-
ists have studied O2-activating metalloenzyme structure–function rela-
tionships extensively. 

Significant advances in our understanding of how these enzymes 
function have accrued, in part from the high-resolution structures of 
resting states and reactive metalloenzyme intermediates through X-ray 
crystallography and spectroscopic characterization, and from detailed 
mechanistic information from intertwined kinetics, synthetic modelling 
and theoretical investigations. Such studies have produced candidates 
for the active oxidants in several classes of important copper and iron 
enzymes that are the subject of this review. These findings have fuelled 
the debate about the mechanisms by which these enzymes operate; one 
common issue being whether O–O bond cleavage occurs before, during 
or after attack on the organic substrate.

Although valuable in its own right, an added benefit of knowing the 
metalloenzyme structure and function is its potential application in the 
design of synthetic catalysts. Such ‘bioinspired’ or ‘biomimetic’ cata-
lysts4,5 may have an advantage over metalloenzyme systems, insofar as 
they might expand the scope of possible substrates, increase the scale of 
production and tune selectivity and/or specificity (for example, reversal 
of asymmetric induction in a stereoselective process). They would also 
be useful for environmentally friendly catalytic chemistry6, where it 
is important to avoid the use of toxic or expensive metal reagents and 
oxidants, energy-consuming processing steps and undesirable reaction 
media. Furthermore, mechanistic studies of biomimetic catalysts can 
provide important insights into biological pathways, thus completing 
a feedback loop relating studies of metalloenzymes to their synthetic 
models. Indeed, recent advances in the design of biologically inspired 
oxidation catalysts containing inexpensive and readily available iron 
and copper centres have led to a new understanding of the fundamental 

reaction steps and reactive intermediates relevant to metalloenzymes 
that incorporate these metals in their active sites, as well as to practical 
applications. In this review, we survey several examples of these advances, 
with particular emphasis in each case on the interplay of catalyst design 
and knowledge of metalloenzyme structure and function.

Biochemical inspirations
Iron and copper ions are the metal ions of choice for many biologi-
cal oxidations because of their abundance in the geosphere, inherent 
electronic properties and accessible redox potentials. Pertinent exam-
ples are enzymes that contain haem iron, non-haem iron and copper 
active sites.

Biologically inspired oxidation catalysis 
Lawrence Que Jr1 & William B. Tolman1

The development of processes for selective hydrocarbon oxidation is a goal that has long been pursued. 
An additional challenge is to make such processes environmentally friendly, for example by using non-
toxic reagents and energy-efficient catalytic methods. Excellent examples are naturally occurring iron- or 
copper-containing metalloenzymes, and extensive studies have revealed the key chemical principles that 
underlie their efficacy as catalysts for aerobic oxidations. Important inroads have been made in applying this 
knowledge to the development of synthetic catalysts that model enzyme function. Such biologically inspired 
hydrocarbon oxidation catalysts hold great promise for wide-ranging synthetic applications.

1Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA. 

Mn+••Mn+

Mn+••M(n+1)+ OO

M(n+2)+

O
M(n+2)+

O

(P)FeII Mn+

M(n+1)+ OO

2e– from
cofactor

Superoxo

Cytochrome P450 
Haem peroxidases
Catalases

Methane 
monooxygenase 
(Mn+ = FeII)
Tyrosinase 
(Mn+ = CuI)

Rieske dioxygenases 
(Mn+ = FeII)
Monocopper hydroxylases 
and amine oxidases 
(Mn+ = CuI)

O2 O2 O2

H+, e– H+, e–

M(n+1)+ O2(P)FeIII OOH M(n+1)+ OO(H)Peroxo

(P)FeIII OO

M(n+1)+

H+, –H2O

Oxo (P +)FeIV O
FeV O

HO

FeIV OCuII O

a cb

Pterin or α-ketoacid-
dependent oxygenases
(Mn+ = FeII)

Figure 1 | Metallo-oxygenase mechanisms. To emphasize parallels with the 
haem paradigm (a), mechanisms proposed for O2 activation by various 
metallo-oxygenases — di-iron and dicopper (b), and mononuclear non-
haem iron and copper (c) — are shown. All involve the formation of an 
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The haem paradigm
The most extensively studied oxygen-activating enzymes are the cyto-
chromes P450 (ref. 7). They carry out the hydroxylation of aliphatic 
C–H bonds and the epoxidation of C–C double bonds (C=C bonds) 
with high regioselectivity and stereoselectivity. Cytochromes P450 have 
an active site that consists of an iron porphyrin cofactor attached to the 
protein backbone through coordination of a cysteine at one of the axial 
positions on the metal, leaving the other axial position available for O2 
binding and activation. Related haem peroxidases and catalases activate 
peroxides with similar active sites where the axial cysteine is replaced 
by histidine or tyrosine8.

The activation of O2 at a metal centre generally entails its two-elec-
tron reduction to the peroxo state and subsequent O–O bond cleavage. 

The generally accepted oxygen activation mechanism associated with 
cytochrome P450 is referred to as the haem paradigm9 (Fig. 1a). In the 
initial step, O2 coordinates to the reduced iron centre. It becomes pro-
gressively reduced to superoxo and peroxo forms and undergoes O–O 
bond cleavage to generate a formally oxoiron(v) oxidant that carries out 
the two-electron oxidation of the substrate. For haem enzymes, the two 
oxidizing equivalents required for oxidation are not stored at the iron 
centre but are instead delocalized on the iron porphyrin unit, so the for-
mally oxoiron(v) oxidant in haem enzymes is generally described as an 
oxoiron(iv)-(oxidized porphyrin radical) species. Such delocalization 
allows access to a potent oxidant that is competent to attack a variety of 
substrates, a common strategy in biocatalysis that informs biomimetic 
design efforts.

Non-haem iron enzymes
As outlined in Fig. 1, the proposed mechanisms for non-haem iron 
enzymes in general follow the haem paradigm, and evidence for 
iron(iii)–peroxo and high-valent iron–oxo intermediates has been 
obtained for some of these enzymes. For example, the di-iron enzyme 
methane monooxygenase (MMO)10 that catalyses the conversion of 
methane to methanol activates O2 via di-iron(iii)–peroxo and di-
iron(iv) intermediates (Fig. 1b). Although the former has been impli-
cated as the oxidant in the epoxidation of electron-rich alkenes such 
as ethyl vinyl ether11, the latter has been demonstrated to be kinetically 
competent to hydroxylate methane12. This di-iron(iv) species has been 
shown by extended X-ray absorption fine structure (EXAFS) analysis 
to have a di(µ-oxo)di-iron(iv) core13 (1, Fig. 2). 

The Rieske dioxygenases, by contrast, activate O2 at a mononuclear 
iron centre bound to a 2-His-1-carboxylate facial triad motif14 (Fig. 1c). 
These enzymes catalyse the cis-dihydroxylation of arene double bonds to 
initiate the biodegradation of aromatics in the soil. For these enzymes, 
the only redox centre that can store the two required oxidizing equiva-
lents is the iron atom, so an oxoiron(v) oxidant has been invoked for 
this reaction. Although direct evidence for a non-haem oxoiron(v) spe-
cies in the enzyme cycle has not yet been obtained, its iron(iii)–peroxo 
precursor (3, Fig. 2) has been characterized by X-ray crystallography15. 
It is proposed that the side-on peroxo moiety either attacks the arene 
double bond directly or isomerizes first to an oxo(hydroxo)iron(v) spe-
cies. Several examples of oxoiron(iv) intermediates (2, Fig. 2) have been 
trapped and characterized16 in studies of non-haem iron enzymes that 
use organic cofactors such as α-ketoglutarate or tetrahydrobiopterin, 
lending credence to the general mechanistic scheme presented in Fig. 1. 
Importantly, each of the side-on peroxo, oxoiron(v) or oxoiron(iv) spe-
cies postulated for the non-haem iron enzymes is a viable target for the 
development of biologically inspired catalysts.
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spectroscopic and theoretical investigations (1 and 2) and have been 
structurally characterized by X-ray crystallography (3–5). Species 1 is 
postulated to hydroxylate methane in soluble methane monooxygenase, 
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Copper enzymes
Copper-containing oxidases and oxygenases comprise a large class of 
enzymes that use intriguing mechanisms to bind and activate O2 and 
oxidize organic substrates17. The active sites of these enzymes con-
tain varying numbers of copper ions, and they have diverse structures 
that underlie similarly diverse functional attributes. We focus here 
on a select few for which extensive structure and function informa-
tion has been obtained and applied to the development of biomimetic 
catalysts.

Galactose oxidase (GAO) is a well-studied member of the family of 
radical copper oxidases that use a novel copper(ii)-tyrosyl radical unit to 
perform two-electron redox chemistry18,19. GAO couples the reduction 
of O2 to H2O2 with the oxidation of primary alcohols to aldehydes. As 
shown by X-ray crystallography (Fig. 3), the so-called ‘inactive’ form 
of GAO features an unusual tyrosinate ligand (at amino acid 272 of the 
enzyme (Y272)) covalently linked to a cysteine (C228)20. In the ‘active’ 
form of the enzyme, this ligand exists as a one-electron oxidized tyrosyl 
radical that is stabilized by a nearby tryptophan21 (W290). In the con-
sensus mechanism (Fig. 3), the ‘active’ Cu(ii)–Y272• form is responsible 
for alcohol oxidation in one phase of the catalytic cycle. It is regenerated, 
with production of H2O2, in the second phase by reaction of the resulting 

‘reduced’ Cu(i) form with O2. Many details of these processes have been 
elucidated through studies of the enzyme, synthetic modelling22,23 and 
theoretical calculations24, including dissection of the key C–H bond-
activating process into electron transfer, proton transfer and H-atom 
abstraction components using kinetic isotope effects and quantitative 
structure-activity relationship correlations25. Notably, the coupling of the 
one-electron redox cycles, Cu(i)↔Cu(ii) and Y272↔Y272•, to effect 
the overall two-electron catalytic half-reaction uniquely illustrates metal 
and organic cofactor synergism worthy of incorporation into designs of 
synthetic oxidation catalysts. 

Tyrosinase and catechol oxidase use an oxidant entirely different 
from the Cu(ii)-tyrosyl radical. In common with the reversible O2 car-
rier protein haemocyanin, the dicopper(i) active sites of tyrosinase and 
catechol oxidase react with O2 to generate a (peroxo)dicopper(ii) unit 
that features an unusual side-on (µ-η2:η2) binding mode, as shown by 
X-ray crystallography for haemocyanin26,27 and tyrosinase28 and by spec-
troscopy for catechol oxidase29 (4, Fig. 2). The µ-η2:η2-peroxide has an 
O–O stretching frequency (~750 cm–1) lower than that of most metal–
peroxide complexes (850–900 cm–1), suggesting significant activation 
of the dioxygen O–O bond by its side-on coordination to two Cu(ii) 
ions. The (µ-η2:η2-peroxo)dicopper(ii) unit is postulated to be respon-
sible for the oxidation of phenols (by tyrosinase) and/or catechols (by 
catechol oxidase)17,30, the former occurring by an electrophilic aromatic 
substitution pathway31. 

Numerous (peroxo)dicopper(ii) complexes have been synthesized, 
including examples with (µ-η2:η2-peroxo)dicopper(ii) cores32–34. Some 
of these interconvert with di(µ-oxo)dicopper(iii) isomers (Fig. 1), rais-
ing the alternative possibility that this core is responsible for substrate 
attack during catalysis by tyrosinase or catechol oxidase (despite the fact 
that it has not yet been observed in a protein)35. Developing synthetic 
systems that can access either or both cores from O2 is an important 
biomimetic strategy for preparing environmentally friendly oxidizing 
reagents. 

Monocopper–oxygen species are implicated as intermediates in the 
functionally important enzymes amine oxidase (AO)36, dopamine 
β-monooxygenase (DβM) and peptidylglycine α-hydroxylating 
monooxygenase (PHM)37. Intermediates under consideration include 
[CuO2]+, [CuOOH]+ and [CuO]+ units (Fig. 1). Kinetic38 and theoreti-
cal studies39 have been interpreted to indicate that a [CuO2]+ moiety 
attacks the substrate in PHM and DβM; such a core has been thoroughly 
defined in synthetic model complexes40 and by X-ray crystallography for 
PHM (5, Fig. 2), although its charge is not known in this case41. Other 
theoretical studies suggest that the [CuO]+ unit is a more potent oxidant 
potentially capable of attacking substrate in these enzymes42,43. Such a 
species has not been identified conclusively in an enzyme or synthetic 
complex, however; so its role in biological and synthetic systems remains 
controversial44. Still, the anticipated high oxidizing power of the [CuO]+ 
moiety makes it an attractive target in efforts to design catalysts for the 
oxidation of relatively unreactive substrates.

Biologically inspired catalysis
The results of the biochemical studies discussed here provide a useful 
starting point for the design of synthetic oxidation catalysts. Progress 
in this area is summarized in this section.
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Copper-catalysed alcohol oxidations
Within the broader context of copper-catalysed oxidations of hydro-
carbons45, particular attention has been paid to the oxidation of alcohols 
to carbonyl compounds using O2 as an oxidant. This is because of the 
significance of the transformation and the desire to develop ‘green’ 
alternatives to procedures that use heavy metal reagents or sensitive 
and/or expensive oxidants, and to procedures that are not economical 
or environmentally friendly46,47. Inspired by the coupling of an organic 
cofactor and Cu(i)↔Cu(ii) redox chemistry in alcohol oxidation by 
the radical copper oxidases (for example, GAO), a variety of synthetic 
systems incorporating organic radicals and copper complexes have been 
studied for this reaction.

In direct analogy to the function of GAO, copper complexes of the 
deprotonated forms of the ligands 6–10 (Fig. 4) catalyse the aerobic 
oxidation of selected alcohols to aldehydes and/or ketones with con-
comitant generation of H2O2 as a coproduct48–54. The involvement of 
Cu(ii)-phenoxyl radical intermediates in these reactions is a further 
similarity with GAO, although differences in mechanism among the syn-
thetic systems and the enzyme have been found. For instance, although 
the system derived from ligand 6 follows a pathway entirely analogous 
to that proposed for GAO involving cycling between Cu(ii)–phenoxyl 
radical and Cu(i)–phenol intermediates48,49, complexes 11 (ref. 53) and 
12 (ref. 51) follow mechanisms that do not involve changes in the metal-
ion oxidation state and differ further with respect to the nuclearity of 
the proposed active species. 

Conceptually related catalytic systems for the aerobic oxidation of 
alcohols incorporate copper salts and the 2,2,6,6-tetramethyl-1-pip-
eridinyloxyl (TEMPO) radical46,55. A variety of copper salts, exogenous 
bases and reaction media (including environmentally friendly ionic 
liquids56 or fluorous biphasic systems57) have been used for this reac-
tion, which differs from that of GAO insofar as H2O rather than H2O2 
is produced as the coproduct with the aldehyde or ketone. Nonetheless, 
pronounced mechanistic similarities with GAO are evident in some 
cases (Fig. 5), with TEMPO playing the same part as the phenoxyl radi-
cal in the enzyme.

Another versatile catalytic system combines CuCl, phenanthroline, 
a suitable base and a substituted hydrazine as the reducing agent58. The 
optimized conditions shown in Fig. 6 include N-methylimidazole as an 
additive and are useful for the clean oxidation of a variety of primary and 

secondary alcohols to the respective ketones or aldehydes59. In common 
with the Cu–TEMPO systems, O2 acts as stoichiometric oxidant and 
H2O is the sole byproduct. An intriguing mechanism has been pro-
posed involving a [CuO]+ species as an intermediate and a pathway 
for intramolecular oxidation of coordinated alkoxide that bears some 
resemblance to that proposed for GAO and the Cu–TEMPO systems.

Copper-catalysed phenol and catechol oxidations
The oxidative reactivity of dicopper complexes that model the active 
sites of tyrosinase and catechol oxidase has been explored extensively 
in efforts aimed mostly at obtaining mechanistic insights into the 
activity of the enzymes33,34,60,61. With respect to understanding the 
phenolase activity of tyrosinase, emphasis has been placed on exam-
ining the involvement of the (µ-η2:η2-peroxo)dicopper(ii) complexes 
and/or their di(µ-oxo)dicopper isomers in stoichiometric (non-cata-
lytic) hydroxylations of ligand arene moieties and external phenols. 
In a catalytic application that capitalizes on the common observation 
of radical coupling of phenol substrates by these oxidants, tyrosinase 
model complexes have been used for the regio-controlled oxidative 
coupling polymerization of phenols62–66 (Fig. 7a). Steric influences of 
the supporting ligand are thought to be critical in inhibiting undesired 
reactions at the ortho position in the putative Cu(ii)-phenolate↔Cu(i)-
phenoxyl intermediate, thus resulting in useful poly(1,4-phenylene 
ether) materials. Several dicopper complexes have also been studied 
as catalysts for the aerobic oxidation of catechols to ortho-quinones, 
which is analogous to catechol oxidase activity. In general, catechols 
may be oxidized both by dicopper(ii) complexes and O2 adducts such 
as (µ-peroxo)dicopper(ii) species, and catalytic cycles incorporating 
both processes have been suggested that typically involve coordination 
of the catecholate to both copper ions and evolution of H2O and/or 
H2O2 byproducts (Fig. 7b).

Iron-catalysed hydrocarbon oxidations
A common feature of the catalytic cycles of cytochrome P450, MMO and 
the Rieske dioxygenases is the involvement of an iron(iii)–peroxo inter-
mediate (Fig. 1). This intermediate may react directly with the substrate 
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or, more likely, undergo O–O bond cleavage to generate a high-valent 
iron–oxo species that contains the two oxidizing equivalents required to 
oxidize the substrate, the locations of which differ for each enzyme. The 
two oxidizing equivalents are distributed between the iron centre and the 
porphyrin ligand for cytochrome P450 and between the two iron centres 
in MMO, but must be localized on the mononuclear iron centre of the 
Rieske dioxygenases. There are thus several possible strategies for devel-
oping biomimetic catalysts. In this section, we focus on recent develop-
ments in iron catalysis using H2O2 as an oxidant. From a biochemical 
perspective, these biologically inspired catalytic systems correspond to 
the peroxide shunt pathways that have been demonstrated for all three 
enzyme types and involve reactions of the iron(iii) forms7,8,67,68 of the 
enzymes with H2O2. The use of a combination of an iron salt or complex 
and H2O2 as an oxidizing system has a history that dates back to the late 
nineteenth century69, but the major challenge has been to inhibit the 
homolytic cleavage of the peroxo O–O bond that produces non-selec-
tive, and thus unwanted, hydroxyl radicals. Instead, the aim is to direct 
the metal-promoted cleavage towards the generation of a metal-based 
oxidant that can carry out hydrocarbon oxidations with high chemo-, 
regio- and stereoselectivity7,8.

Much effort has been invested into the development of metallo-
porphyrin catalysts that mimic the reactivity of cytochrome P450, and 
these endeavours have been reviewed extensively70. The first two exam-
ples in Table 1 illustrate how efficiently H2O2 can be converted into 
desired epoxide products by using electron-deficient porphyrins71,72 (lig-
ands are shown in Fig. 8). For the catalyst Fe(13), the solvent methanol 
provides the protons needed to promote the heterolytic cleavage of the 
peroxo O–O bond71,73, thereby mimicking a mechanistic principle well 
established for cytochrome P450 and related haem peroxidases7,74.

The marked increase in information on non-haem iron oxygenases 
within the past decade10,75,76 has spurred efforts to explore the use of non-
haem ligand scaffolds to facilitate such oxidation catalysis. Only recently 
have conditions been found to engender oxidative transformations with 
high stereoselectivity77–79. In this section, we highlight these notable suc-
cesses in the epoxidation and cis-dihydroxylation of C=C bonds and the 
hydroxylation of aliphatic C–H bonds, which are all potentially impor-
tant transformations in organic synthesis and medicinal chemistry. 

The most extensively studied complexes thus far are those of tetraden-
tate nitrogen-donor ligands with topologies that allow two cis-oriented 
coordination sites to be available for peroxide binding and activation. 
This arrangement is analogous to that found for the Rieske dioxygen-
ases as illustrated by 3 (Fig. 2) but is in contrast to that typical for haem 
enzymes where only one coordination site is available for this purpose. 
A key observation that led to the discovery of this family of complexes 

was the use of dilute H2O2, which minimized side reactions such as 
the unwanted production of highly reactive hydroxyl radicals80. When 
the reaction was carried out in this manner, compelling evidence for 
a metal-based oxidant was obtained. Specifically for the prototypi-
cal Fe(15) catalyst, cyclohexane oxidation resulted in a high alcohol:
ketone product ratio that was unaffected by the presence of O2, and 
hydroxylation of the tertiary C–H bonds of cis-1,2-dimethylcyclohexane 

Table 1 | Iron and manganese oxidation catalysts that use H2O2 as the oxidant to give high conversion of alkenes into epoxide or cis-diol products
Catalyst (mol%) Additive (equivalents per metal) Solvent (Temperature) Alkene H2O2:alkene Epoxide yield cis-Diol yield Reference

Fe(13) (0.05) None 3:1 MeOH:MeCN (25 °C) Cyclooctene 1.2 95% 0% 71

Fe(14) (1) None CH2Cl2* (25 °C) Cyclooctene 1 81% 0% 72

Fe(17) (3) None MeCN (25 °C) 1-Octene 1.5 73% 3% 84

Fe(17) (3) HOAc (10) MeCN (25 °C) 1-Decene 1.5 85% 0% 83

Fe(17) (0.5) HOAc (12,000) MeCN (0 °C) Cyclooctene 1.5 99% <1% 85

Fe(15) (3) None MeCN (25 °C) 1-Octene 4 16% 53% 83

Fe(15) (0.5) HOAc (12,000) MeCN (0 °C) Cyclooctene 1.5 99% <1% 85

Fe(16) (5) None MeCN (25 °C) Cyclooctene 1.5 9% 0% 87

Fe(16) (5) HOTf (5) MeCN (25 °C) Cyclooctene 1.5 86% 0% 87

1:2 FeCl3:19 (5) Pyrrolidine (2) t-AmylOH (25 °C) trans-Stilbene 2 97% 0% 89

MnSO4 (1) 0.2 M HCO3
— 

pH 8 buffer (0.25)

DMF (25 °C) Cyclohexene 10 99% 0% 92

Mn(20) (0.1) None MeCN (0 °C) Cyclooctene 1.3 1% 0.5% 93

Mn(20) (0.1) Cl3CCOOH (10) MeCN (0 °C) Cyclooctene 1.3 24% 44% 94

Mn(20) (0.1) 2,6-Cl2C6H3-COOH (30) MeCN (0 °C) Cyclooctene 1.3 8% 53% 94

Mn(20) (0.1) Salicylic acid (50) MeCN (0 °C) Cyclooctene 1.3 51% 13% 94
*In a biphasic mixture with the ionic liquid 1-butyl-3-methylimidazolium bromide. DMF, dimethylformamide; Me, methyl; OAc, acetate; OTf, trifluoromethanesulphonic acid. 
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afforded a tertiary alcohol product with retention of configuration of the 
cis-1,2-dimethyl groups81. These results indicate a C–H bond cleavage 
event where alkyl radicals (if formed) are very short-lived. Oxidation 
of alkenes yielded epoxide and cis-diol products with similarly high 
retention of configuration82. Importantly, these reactions are the first 
examples of iron-catalysed cis-dihydroxylation of an alkene.

The nature of the metal-based oxidant in Fe(15) catalysis was deduced 
from a combination of low-temperature spectroscopic studies and room-
temperature 18O-labelling experiments81,82. At –40 °C an Fe(iii)–OOH 
intermediate was trapped in acetonitrile (MeCN) solvent and charac-
terized by a variety of spectroscopic methods; this inter mediate was 
then proposed to undergo O–O bond cleavage to form the putative 
Fe(v)(O)(OH) oxidant. Strong support for the involvement of the latter 
came from labelling experiments that established the incorporation of 
added H2

18O into the oxidation products with retention of stereochem-
istry (Fig. 9). Most compelling was the observation that the cis-diol 
product incorporated one oxygen from H2O2 and the other from H2O. 
These results emphasize the critical part a proximal proton donor (that 
is, the metal-bound water) plays in promoting the heterolytic cleavage 
of the O–O bond and rationalizes why complexes of closely related penta-
dentate ligands are poor catalysts for such oxidations.

So far, several non-haem iron-based catalytic oxidation systems have 
been developed with potential practical importance. Eric Jacobsen and 
co-workers demonstrated the use of acetic acid as an additive (30 mol%) 
in Fe(ii)(17) catalysis that converted alkenes into epoxides with a high 
yield83.With 3 mol% catalyst and a 50% excess of H2O2 at 4 °C, even 
terminal alkenes could be epoxidized to give product yields as high as 
90%. The added acetic acid is clearly important, as this additive enhances 
both the yield and selectivity for epoxide83,84. 

Further exploration of the effect of acetic acid in Fe(17) and Fe(15) 
catalysis by Rubén Mas-Ballesté and Lawrence Que Jr 85 showed that 
cyclooctene could be converted nearly quantitatively to an epoxide 
within 2 min in a 1:2 MeCN:acetic acid solvent mixture at 0 °C. Spectro-
scopic and kinetic evidence was obtained for the binding of acetic acid to 
the Fe(iii)–OOH intermediate, emphasizing the importance of a proxi-
mal proton donor to promote the heterolytic cleavage of the O–O bond 
to form an Fe(v)(O)(OAc) oxidant85,86 (Fig. 9) and reiterating a principle 
well documented from studies of cytochrome P450 and haem peroxi-
dases7,74. Similarly, Elena Rybak-Akimova and co-workers showed that 
the iron complex of macrocycle 16 (Fig. 8) became an effective epoxida-
tion catalyst only when five equivalents of trifluoromethane sulphonic 
acid were added to the reaction mixture87. The added acid was proposed 
to protonate the aminoalkyl ‘tail’, generating an ammonium group close 
enough to a presumed Fe–OOH intermediate to promote heterolytic 
O–O bond cleavage.

Mark Chen and M. Christina White88 have ingeniously applied the 
above Fe(17)–H2O2–acetic acid chemistry46 to catalyse the hydroxylation 
of unactivated tertiary C–H bonds with a related Fe(18, where R is H) 
complex. With 5 mol% catalyst, the target C–H bond could be hydroxy-
lated in 40–60% yield in many of the examples presented. In general, the 
most susceptible tertiary C–H bond is the one that is most electron-rich 
and least sterically hindered. The transformation was tolerant of many 
functional groups, as shown in Fig. 10 (upper panel) for the hydroxyla-
tion of the antimalarial drug artemisinin at the C10 position. When the 
substrate had a carboxylate functionality, the carboxylate took the place 
of the acetic acid additive and could be used to directly attack a nearby 
C–H bond, as illustrated in Fig. 10 (lower panel) for the hydroxylation 
of a tetrahydrogibberellic acid analogue. These examples show that these 
biologically inspired catalysts may be useful for the synthesis of complex 
organic molecules.

Iron complexes can also be used to catalyse asymmetric alkene oxida-
tion, and two systems affording high enantioselectivity are mentioned 
here. Matthias Beller and co-workers developed an in situ-generated cata-
lyst capable of epoxidizing aryl alkenes with up to 97% yield (Table 1) by 
using a combination of FeCl3, two equivalents of pyridine-2,6-carboxylic 
acid (the doubly protonated form of 19) and two equivalents of pyrrol-
idine in tert-amyl alcohol solvent89. When monotosylated (S,S)-1,2-
diphenyldiaminoethane was used in place of pyrrolidine90, epoxides with 
an enantiomeric excess as high as 97% were obtained. By contrast, Que 
and co-workers used chiral ligand 18 (where R is Me) (Fig. 8) to obtain a 
complex that catalysed the oxidation of trans-2-heptene to give a cis-diol 
product with 97% enantiomeric excess91. Insights into the nature of the 
active species in these systems are not yet available. 

Although not a strategy often used in nature, substituting Mn for Fe can 
result in superior oxidation catalysts, as was found for metallo porphyrins70. 
Non-porphyrinic Mn centres can also activate H2O2 to catalyse alkene oxi-
dations. Kevin Burgess and co-workers found that even simple MnSO4 was 
effective for alkene epoxidation, when carried out in dimethylformamide 
(DMF) solvent in the presence of 0.2 M NaHCO3 buffer at pH 8 (ref. 92). 
HCO4

– was formed under these conditions and presumably reacted with 
the Mn(ii) ion to form either a Mn(ii)-peroxo carbon ato or Mn(iv)=O 
species that carried out the epoxidation. Ben Feringa and co-workers dem-
onstrated that dinuclear Mn(20) complexes catalysed alkene oxidations 
with better turnover numbers than Fe(15) and Fe(17) (700 compared with 
200 turnovers in the best-case scenarios)93,94. Both epoxide and cis-diol 
products were obtained, and the catalytic efficiency and the epoxide:diol 
ratio were modulated by the electronic and steric nature of carboxylic 
acid additives. Labelling studies of cyclooctene oxidation showed that 
H2

18O incorporation into epoxide and cis-diol products analogous to those 
reported for Fe(15), implicating the involvement of metal–peroxo and 
high-valent metal–oxo intermediates82. However, unlike in the iron study, 
the various species involved in Mn catalysis were proposed to be dinuclear 
in nature, and no intermediate has been identified so far94.
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Figure 10 | Illustrative selective oxidations by iron. Highly selective 
oxidations of secondary and tertiary C–H bonds in complex natural 
products have been achieved using Fe(18) (R = H) and H2O2, as illustrated 
by the two reactions shown. The key functional groups involved are shown 
in red. Ac, acetyl.
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Very recently, it was reported that methane could be oxidized in water 
by H2O2 at 25–60 °C with silica-supported [Fe2N(21)2] as the catalyst95. 
As many as 150 mols CH4 per mol catalyst could be oxidized to formal-
dehyde and formic acid. Catalytic activity was improved by the introduc-
tion of 0.1 M H2SO4 and evidence was obtained for an H2O2-derived oxo 
adduct of the starting catalyst by electrospray mass spectrometry. On 
this basis, a mechanism following the haem paradigm (Fig. 1) was pro-
posed involving formation of metal–peroxo and high-valent metal–oxo 
species on the intact Fe–N–Fe unit. 

In closing, we briefly mention here the use of iron complex and H2O2 
combinations for environmental applications, which go beyond the 
scope of this review. This effort has been pioneered by Terrence Col-
lins, whose group has designed and developed complexes of tetraamido 
macrocylic ligands (TAML) such as 22 that are water-soluble and oxida-
tively and hydrolytically robust96. These complexes catalyse the activa-
tion of H2O2 and are being investigated for use in the treatment of waste 
water from pulp and textile mills to remove coloured effluents and toxic 
chlorinated phenols. Although the nature of the oxidant(s) generated 
by the Fe(22) and H2O2 combination that carry out these interesting 
transformations has not been established, metastable oxoiron(iv) and 
oxoiron(v) complexes of the TAML family have recently been trapped 
in organic solvents at low temperature and characterized spectro-
scopically97,98. Indeed, the latter is the only bona fide oxoiron(v) complex 
that has been identified. 

Challenges
In the past decade, Fe, Mn and Cu complexes with non-porphyrinic lig-
ands that can catalyse oxidations of C–H and C=C bonds by O2 or H2O2 
have been identified. These oxidations were inspired by a mechanistic 
understanding of similar transformations carried out by iron and copper 
enzymes. The successes noted in this review are merely starting points for 
further investigations; much more work needs to be done to accomplish 
the goal of discovering broadly useful, active and highly selective hydro-
carbon oxidation catalysts that operate in an environmentally friendly 
manner. With H2O2 as the oxidant, appropriate conditions have been 
determined that minimize formation of unselective hydroxyl radicals and 
promote the heterolytic cleavage of the O–O bond. The latter generates 
a more selective metal-based oxidant that can effect substrate oxidations 
with significant chemoselectivity, regioselectivity, stereoselectivity and/or 
enantioselectivity. Putting this into practice in ways that are useful for 
industrial and fine-chemical synthesis is an important goal. Similarly, 
although effective catalysts for alcohol oxidations using copper–cofactor 
pairs have been developed, finding systems that are both highly active 
and broadly applicable requires further effort46. More generally, extend-
ing the range of substrates that can be oxidized under environmentally 
friendly conditions by iron or copper catalysts is an important goal, a 
prime example being the selective hydroxylation of methane to methanol 
performed by the soluble (di-iron-containing) and particulate (copper-
containing) MMOs10,99. 

A significant challenge is the development of selective catalytic sys-
tems that use O2 as the oxidant and avoid deleterious side reactions. 
Biological systems have unique capabilities in this regard through the 
control of the spatial and/or temporal distribution of substrates and 
oxidants. Such control has yet to be exerted in model systems and needs 
to be addressed, perhaps through more sophisticated biomimetic design 
strategies than those used so far. Further discoveries are likely to be 
made as mechanistic understanding of the enzymes accrues, new types 
of reactive intermediate in the biological and synthetic models systems 
are uncovered and applications toward catalysis are explored. ■
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