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Formation of ArF from LPdAr(F):
Catalytic Conversion of Aryl Triflates
to Aryl Fluorides
Donald A. Watson,* Mingjuan Su, Georgiy Teverovskiy, Yong Zhang, Jorge García-Fortanet,
Tom Kinzel, Stephen L. Buchwald†

Despite increasing pharmaceutical importance, fluorinated aromatic organic molecules remain
difficult to synthesize. Present methods require either harsh reaction conditions or highly
specialized reagents, making the preparation of complex fluoroarenes challenging. Thus, the
development of general methods for their preparation that overcome the limitations of those
techniques currently in use is of great interest. We have prepared [LPd(II)Ar(F)] complexes,
where L is a biaryl monophosphine ligand and Ar is an aryl group, and identified conditions under
which reductive elimination occurs to form an Ar-F bond. On the basis of these results, we
have developed a catalytic process that converts aryl bromides and aryl triflates into the
corresponding fluorinated arenes by using simple fluoride salts. We expect this method to allow
the introduction of fluorine atoms into advanced, highly functionalized intermediates.

Alarge number of pharmaceuticals and
agrochemicals contain fluorinated aro-
matic (Ar–F) groups, which enhance

solubility, bioavailability, and metabolic stability
compared with nonfluorinated analogs (1–4). Fur-
thermore, radioactive 18F-labeled organic com-
pounds are also widely used as contrast agents
for positron emission tomography (PET) (5, 6).

However, traditional methods for the intro-
duction of a fluorine atom into an aromatic frame-
work usually require harsh conditions that are
incompatible with many functional groups. Such
methods include direct fluorination (7), the con-
version of amines via the aryldiazonium salt with
HBF4 (Balz-Schiemann reaction) (8), and the nu-
cleophilic substitution of electron-poor bromo- or
chloroarenes with KF (Halex reaction) (9), as well
as the more recent transformation of aryl iodides
with CuF2 (10). A modified Balz-Schiemann
process, of particular use for PET (11), uses
aryliodonium salts that are produced under highly
acidic or oxidizing conditions (12). In a recent
important advance, the Halex reaction was per-
formed at room temperature by using anhydrous
tetrabutylammonium fluoride, but the substrate
scope was limited and the fluoride source is not
readily amenable to the preparation of 18F-labeled
compounds (13). Because of these limitations,
fluorine atoms are often introduced to aromatic
compounds early in synthetic sequences and be-
fore the introduction of substantial molecular com-
plexity, which greatly increases the difficulty of
accessing target molecules.

Recently, transition-metal promoted Ar-F
bond formation has been achieved with use of
electrophilic “F+” reagents such as Selectfluor
(Air Products and Chemicals, Incorporated, Al-
lentown, PA) or N-fluoropyridinium salts (14–20).
These interesting reactions are believed to proceed
via high-valent Pd or Ag intermediates and have
been used to access highly functionalized aryl fluo-
rides. However, these reactions have some limita-
tionswith respect to preparative chemistry. Inmany
cases, stoichiometric amounts of the transitionmetal
must be used. In the reported examples that proceed
with a catalytic quantity of metal, specific direct-
ing groups on the substrate are required to facili-
tate a C-H activation process, thus diminishing the
general applicability of the methods (14, 15, 21).
An additional drawback of this approach is that
electrophilic 18F reagents are not available with
high specific activity, lessening the utility of these
methods for PET applications (12, 22).

In light of the importance of fluorinated arenes
and the practical limitations of currentmethods for
their preparation, the metal-catalyzed conversion
of an aryl halide or sulfonate (e.g., triflate, abbre-
viated as OTf) with a nucleophilic fluorine source
(such as an alkali metal fluoride) to yield the
corresponding aryl fluoride is a highly desirable
transformation (Fig. 1). For a process operating at
reasonable temperatures and in the absence of elec-
trophilic reagents, high functional group compat-
ibility and a wide substrate scope might be
expected. This is of particular importance in the
preparation of biologically active compounds,
where often late-stage modifications are key in
identifying medicinal targets. In addition, such a
strategy would be ideal for the preparation of PET
imaging agents because mildly nucleophilic 18F–

reagents, especially Cs18F, can be readily prepared.
Grushin’s elegant mechanistic studies of iso-

lated [LnMAr(F)] complexes (L is a ligand andM

is Pd or Rh) have demonstrated that reductive
elimination to form an Ar-F bond is extremely
challenging (22–27). These experiments have
shown that undesired reaction pathways involv-
ing supporting ligands and fluoride dominate the
chemistry of these complexes. This is due to both
the high barrier to Ar-F bond formation as well as
favorable pathways involving ligand-based P-F
or C-F bond formation. In addition, the accessi-
bility of stable [LnPdAr(F)]2 dimers has been
suggested to contribute to the difficulty in
achieving the desired reductive elimination (28).
These results have cast doubt on whether a cat-
alytic cycle as depicted in Fig. 1 is viable. We
note, however, that for the heavier halides the
reductive elimination of ArX (X is Cl, Br, or I)
from a Pd(II) intermediate is precedented (29).
In addition, it was recently shown that the dimeric
Pd complex [(o-tol)3PPd(p-NO2C6H4)(F)]2
yielded 10% of para-fluoronitrobenzene upon
heating in benzene in the presence of an excess
of ligand 1 (28), a ligand initially developed in
our laboratories for use in C-N bond-forming
reactions (Fig. 2). Although it has been questioned
whether this latter reaction proceeds via a
conventional reductive elimination (30), we were
intrigued by the possibility that biaryl mono-
phosphine ligands could promote this type of
difficult reductive elimination to formAr-F bonds.

Herein, we report the preparation of a well-
characterized Pd(II) complex that undergoes
reductive elimination producing an aryl fluoride.
On the basis of this result, we have developed a
palladium-catalyzed method for the preparation
of aryl fluorides from aryl triflates using CsF
that proceeds with high functional group toler-
ance under mild reaction conditions.

Ar–F reductive elimination from a Pd(II)
complex. Recently, we reported a monophos-
phine ligand, BrettPhos (2), for use in aryl ami-
nation reactions (31) (Fig. 2). Nuclear magnetic
resonance (NMR) and crystallographic studies
of [2·PdAr(X)] (X is Cl or Br) complexes re-
vealed that theyweremonomeric both in solution
and in the solid state. We decided to prepare
analogous [2·PdAr(F)] complexes in order to de-
termine whether they were also monomeric and
to see whether 2 could be useful as a ligand in
promoting reductive elimination to form Ar-F
bonds (32). We found that these targets were best
accessed by transmetalation of the [2·PdAr
(Br)] complexes with AgF at room temperature
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Fig. 1. Metal-catalyzed aryl fluorination.
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in dichloromethane (Fig. 3). The isolated [2·PdAr
(F)] complexes exhibit a characteristic doublet in
31P and 19F NMR spectra with a coupling
constant 2JPF of ~175 Hz, depending on the aryl
group. The x-ray structure of 4 (Ar is 2-methyl-
4-trifluoromethylphenyl) confirmed the mono-
meric nature of the complex (Fig. 4).

We next examined the thermolysis of 4 and
5 at 100°C in toluene and found that reductive
elimination to form 6 and 7 occurs in yields of
15% and 25%, respectively (Fig. 3), which dem-
onstrates that Ar-F bond formation is possible
with use of these complexes. The yields in these
reactions could be increased to 45% of 6 and
55% of 7 if the reductive eliminations were
conducted in the presence of an excess of the
corresponding aryl bromide (33, 34). In these
cases, the 31P NMR spectra of the reaction mix-
tures showed that the oxidative-addition com-
plexes [2·PdAr(Br)] were formed as the only
phosphorous-containing products, suggesting
LPd(0) is formed along with the ArF product.

Having demonstrated that oxidative addi-
tion, halide exchange (transmetalation), and re-
ductive elimination were all possible, we next
examined the catalytic conversion of ArBr 8 to
ArF 7. Upon treatment of 8 with AgF (1.5
equivalents) and 10 mole percent (mol%) each
of 2 and [(COD)Pd(CH2TMS)2] (COD is 1,5-
cyclooctadiene) (35) at 110°C for 18 hours, a
52% yield of 7 was observed, which was in-
creased to 74% after optimization of the re-
action conditions (Fig. 5). No product was detected
in control experiments that omitted 2 and/or the
Pd precatalyst. This result demonstrates that Pd
complexes supported by BrettPhos can catalyze
the conversion of an aryl bromide to an aryl fluo-
ride. However, the scope of aryl bromides that
could be effectively transformed is to date limited
to electron-poor substrates bearing an ortho sub-
stituent, in line with the observation that no re-
ductive elimination took place from [2·PdAr(F)]
complexes with Ar being 3,5-dimethylphenyl or
4-n-butylphenyl.

Efficient catalysis with aryl triflates. Con-
currently, we also examined the use of aryl
triflates as substrates. Although initial reactions
of the triflate of 1-naphthol (9) provided only a
trace of product 10, the use of CsF in place of
AgF as the fluoride source gave 10 in 30% yield
(Fig. 6). In addition, 5% of naphthalene (11)
was also observed. We also found that the read-

ily prepared and more stable [(cinnamyl)PdCl]2
could be used as the Pd precatalyst with a sim-
ilar outcome. Overall, this result is important
because it demonstrates that the fluorination can
be carried out without needing a stoichiometic
quantity of a noble metal component while still
using a nucleophilic fluoride source.

In order to optimize the Ag-free reaction, a
broad range of ligands were examined; under
these conditions (Fig. 6), only ligands closely
related to 2 provided more than a trace amount

of 10 (36, 37). Best results were obtained with
use of tBuBrettPhos (3) (Fig. 2) as ligand; a
71% yield of 10 was realized, with only 1% of
reduction product 11 observed. Further optimi-
zation of the reaction conditions increased the
yield of 10 to 79%. Because the reaction proved
to be sensitive to water (38), commercially ob-
tained CsF was dried at 200°C under vacuum
overnight and handled in a nitrogen-filled glove-
box. Replacing CsF with spray-dried KF afforded
10 in 52% yield. No reaction was observed in the

Fig. 3. Preparation of and reduc-
tive elimination from [2·PdAr(F)]
complexes.

L Pd
Br

Me
R

L Pd
F

Me
R

F

Me R

4   R = CF3
5   R = CN

74%
70%

6 
7

15%
25%

L = 2. a 5 equiv. AgF, CH2Cl2, 25 °C, exclusion of light, 12 to 24 h.
b toluene, 100 °C, 2 h, yields determined by 19F NMR spectroscopy.

a b

Fig. 4. X-ray structure of complex
4 [ORTEP (www.ornl.gov/sci/ortep/
ortep.html) drawing at 50% prob-
ability, hydrogen atoms omitted for
clarity].

OMe

i-Pr i-Pr

i-Pr

MeO PR2

i-Pr i-Pr

i-Pr

P(t-Bu)2

tBuXPhos (1) BrettPhos (2, R = Cyclohexyl)
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Fig. 2. Ligands for the successful reductive elim-
ination of Ar-F.

Fig. 5. Catalytic conversion
of aryl bromide 8 to aryl flu-
oride 7. Br

Me

F

MeCN CN

Yield was determined by NMR spectroscopy due to volatility of product. 
(1% of reduced substrate,  m-tolunitrile, was also observed.)

5 mol%  [(COD)Pd(CH2TMS)2]
10 mol% 2, 1.5 eq AgF

toluene, 130 °C, 18 h
exclusion of light

74%

8 7

Fig. 6. Optimization of aryl triflate
fluorination. Conversion and yield were
determined by GC.
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absence of the catalyst, ruling out both classic
nucleophilic aromatic substitution (SNAr) and
aryne mechanisms (39).

We realized that for some applications, in-
cluding PET, it was necessary to have a faster
process. We found that the conversion of 9 to 10,
using 5 mol% [(COD)Pd(CH2TMS)2] as precat-
alyst, 10 mol% of 3 as supporting ligand, and 3
equivalents of CsF, was complete in 2.5 hours in
toluene at 110°C, yielding 80% of 10. Increasing

the amount of CsF to 6 equivalents and adding
30 mol% of the solubilizing agent poly(ethylene
glycol) dimethyl ether (Me2PEG) led to full con-
version in less than 30 min, albeit in yield of
71%. Similar rates of reaction could be achieved
by using [(cinnamyl)PdCl]2; with 5 mol% of this
palladium source and 15% ligand, the reaction
proceeds to completion in ≤2 hours in 79% yield
(NMR). We are in the process of identifying con-
ditions to achieve faster conversion of the sub-

strate without diminishing the yield, as required
for PET applications.

As can be seen in Fig. 7, the fluorination
of aryl triflates has substantial scope. Simple
aromatic substrates, such as ortho-biphenyl
triflate, react rapidly to provide aryl fluorides
in high yield. Hindered substrates such as
4-acetyl-2,6-dimethylphenyl triflate are also ef-
ficiently converted to product (13). Electron-
deficient arenes can be efficiently transformed
by using only 2 mol% of catalyst (14, 18, and
19). Important from a practical standpoint, a
variety of heterocyclic substrates can also be suc-
cessfully fluorinated by using these conditions.
Flavones (17), indoles (21), and quinolines (22 to
24) were all converted in good yield. More com-
plex aryl triflates derived from fluorescein (20)
and quinine (25) could also be effectively con-
verted to their fluorinated analogs, demonstrating
that this method can be used in the preparation of
pharmaceutically relevant compounds. In some
cases, product formed in high yield at 80°C
(14, 17, and 24). On a 10 mmol scale, butyl 4-
fluorobenzoate 14 was prepared at 80°C with
no observable formation of reduced by-product
(in general, 2% or less reduction product was
observed across the range of substrates screened).

Many functional groups are tolerated, an ex-
ception being Lewis basic groups such as amines
or carbonyls in the ortho position of the aryl
triflate. No reaction takes place in these instances,
presumably because the basic group coordinates
the Pd center, possibly preventing transmetala-
tion. As in the Pd-catalyzed formation of Ar-O
bonds, the transformation of electron-rich sub-
strates was more challenging. We found that
good yields were obtained at higher temperatures
(130°C).

Formation of regioisomers. Unexpectedly,
regioisomeric products were formed in a few
cases (Figs. 8 and 9). Because control exper-
iments did not yield any product in the absence
of catalyst, we believe that isomer formation is
also a palladium-catalyzed process. Investigat-
ing a series of tolyl (26 to 28) and anisole (29
to 31) triflates, we found that for substrates 26,
27, and 29 the observed selectivities are quite
distinct from those reported for a benzyne process
(39) (Fig. 8). Experiments with 2,6-dideuterated
anisole triflate 31 showed a reduced rate of for-
mation of the undesired regioisomer, whereas
the rate of formation of the desired product
remained largely unchanged, leading to a 2.5-
fold increase in selectivity in comparison to the
reaction with unlabeled 31. Thus, at least for
this substrate, we conclude that two compet-
ing pathways are involved; it is evident that
hydrogen abstraction is the rate-limiting or the
first irreversible step in regioisomer formation
and that little or none of the desired isomer is
formed from the path that finally leads to the
regioisomer.

Although we do not have a complete mech-
anistic understanding of the pathway leading to the
regioisomers, we have found that the product ratio

N
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Fig. 7. Fluorination of aryl triflates. Isolated yields are an average of at least two independent reactions.
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can be strongly affected by solvent polarity; the
desired pathway is favored in highly apolar media.
Examination of a number of solvents for the
conversion of 32 to 33 revealed that the formation
of the undesired isomer 14 is almost completely
suppressed with use of cyclohexane (Fig. 9). This
trend appears to be general; in most instances in
which the undesired regioisomer was observed
with use of toluene, switching to cyclohexane
afforded almost exclusively the desired product.
For example, fluorinated aryls 33 to 37 could be
prepared with greater than 95:5 selectivity favor-
ing the desired isomer (Fig. 10). This modification
provides a highly practical means to minimize
formation of regioisomeric by-products.

Outlook. Starting from the observation of the
reductive elimination of ArF from a [2·PdAr(F)]
complex, we have developed a metal-catalyzed
direct conversion of aryl bromides and aryl tri-
flates into the corresponding aryl fluorides using
simple fluoride sources such as AgF and CsF. In
particular, the transformation of aryl triflates ex-
hibits a wide substrate scope and tolerates a
number of functional groups, allowing for the
introduction of fluorine atoms into highly func-
tionalized organic molecules. Key to these find-
ings was the use of the sterically demanding,
electron-rich biaryl monophosphine tBuBrettPhos
3 as the supporting ligand. We believe that this
ligand not only promotes reductive elimination of
the Ar-F bond because of its large size but also
prevents the formation of dimeric [LPdAr(F)]2
complexes. At present, both of these factors
appear to be critical in the successful catalytic
reaction. Although some limitations remain with
regard to substrate scope and reaction conditions,

we expect this method to be applicable to the
preparation of biologically active and radio-
labeled aryl fluorides.
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Fig. 9. Solvent screen and
fluorination of triflates that
gave regioisomers. Unless
otherwise noted, yields and
ratios determined by GC and
19F NMR. 32 33 14

Solvent

Toluene
Benzene
THF
Cyclohexane
n-Heptane

conversion combined yield ratio 33/14

100
100
95

100
100

71%
69%
18%
60%
39%

78:22
90:10
78:22
>98:2
85:15

Cyclohexane† 100 80% 99:1

 * Yield not determined. † Optimized condition 100 °C, isolated yield.

2%
*
*
1%
*
1%

ArH

5 mol% [(cinnamyl)PdCl]2
15 mol% 3

CO2nBu

OTf

CO2nBu

F

CO2nBu

F

+
2 equiv CsF, Solvent

110 °C, 12 h

Fig. 10. Use of cyclo-
hexane as solvent to
suppress formation of
regioisomers. Desired
isomer is shown. Prod-
uct ratios are for regio-
isomeric aryl fluorides as
indicated. Isolated yields
are for the major isomer,
with values in parentheses
denoting the amount of
reduced starting materi-
al based on the isolated
product yield.

N
Boc

F
F

OMe

Me
F

PhO

37

Ph

F

36

m/p = 87:13 o/m = 77:23 p/m = 93:7 m/p = 93:7tol*

cy† m/p = 96:4
90% (<1%)

110 °C

o/m = 98:2
61% (~8%)

130 °C

p/m = >98:2
80% (3%)

100 °C

m/p = >98:2
77% (2%)

110 °C

* 2.5–5 mol% [(cinnamyl)PdCl]2, 7.5-15 mol% 3, solvent = toluene. 
†solvent = cyclohexane.

m

p
m

p

m

p

m

o

2.5 mol% [(cinnamyl)PdCl]2,
7.5 mol% 3, 2 equiv CsF,  

solvent, 12 h, tempOTf
R

F
R

34 35
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