ORGANIC ELECTRONICS LAB

Organic light-emitting diodes

OLED Displays and Device manufacture

Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University

Device Structures: OLEDs vs LCDs

Pixel Addressing Modes

Passive Matrix

- Stripes of conductor on opposing glass plates
- Pixels defined by intersection of electrodes

Active Matrix

- Array of pixel electrodes on one glass plate, common electrode on opposing glass plate
- Switch at each pixel for isolation

Passive Matrix OLED Displays

Advantages

Simple structure
Easy to fabricate
Low cost

Disadvantages

Limit life time More power consumption (LED, Capacitive, Resistive)

Fabrication of PM-OLED Displays

Passive Matrix OLED Displays

- · Line by line multiplex scanning
- Duration of addressing is 1/mux rate
- Pixel pulsed luminance = mux rate times average luminance
 if 64 rows then pixel L=6400 nits for an average of 100 nits
- Limited addressed lines

Why Active Matrix OLED Displays?

Lower power consumption Longer lifetime Higher contrast ratio Higher yield

Monochrome, PMOLEDs: 15 cd/A, 0.1 mm², 100 cd/m²

Power consumption of displays of different sizes and resolutions

Resolution (column/row)	Diagonal (inch)	P _{LED} (mW)	$P_{\text{CAP}} (\text{mW})$	P_{RES} (mW)	P _{TOTAL} (mW)	Efficacy (lm/W)
80 × 60	1.2	15	10	1	26	5.3
160×120	2.4	80	110	10	200	2.8
320×240	5	400	1300	300	2000	1.1
640×480	10	2000	18 000	8000	28 000	0.3

Active vs Passive : Power Consumption

Active Matrix LCD Operation

Active Matrix OLED Displays

- Place a switching TFT at each pixel
- Selected pixel stays on until next refresh cycle (pixels are switched and shine continuously)
- · Common cathode
- Unlimited addressed lines

Active Matrix OLED Displays

OLED Pixel TFT Performance Requirements

Ability to supply current to OLED (>10 mA/cm²)

$$\rightarrow$$
 I_{ON} = 5 - 10 μA (V_{GS} < 10 V, V_{DS} < 5 V)
 \rightarrow mobility > 10 cm²/V•s

→ Poly-Si TFT technology is needed!

Note: Phosphorescent OLEDs are not considered yet.

Schematic cross-section of AM-OLED pixel:

OLED Pixel TFT Requirements (cont'd)

Low leakage to maintain charge

$$\rightarrow$$
 I_{OFF} < 1 pA (V_{GS} =0 V; V_{DS} = 10 V)

- Poly-Si TFT technology meets these requirements!
 - Uniformity of I_{ON} is a challenge, however.

Poly and Amorphous Silicon OLED Displays

- · High mobility p-Si enables integrated drivers
- Minimal connections to glass edge (video, timing)
- Integrated drivers = reduced display module size
- Less uniform
- G. Rajeswaran et al., Proc. of SID, p. 974 (2000)

- · Low mobility a-Si insufficient for integrated drivers
- Many connections to glass edge (rows + columns)
- · External drivers = increases display module size
- · Enabled by high-efficiency emitters (triplets)
- · More uniform

Li et al., Proc. of SID, p. 14 (2003)

Manufacturing started

- Pioneer 1997
- TDK (Alpine, 2001)
- Samsung-NEC Mobile Display (SNMD) (2002)
- RiTdisplay (2003)
- Sanyo-Kodak (2003)

R, G, B colors available

limited lifetimes for blue

Shadow masking allows easy patterning for area color

presents challenges with scalability and high volume manufacturing

Shadow masking challenging for full color

high throughput and scalability is a challenge

Full-Color AMOLED Display Product KODAK LS633 Digital Camera

2.16" diagonal 521 x 218 LTPS

(Photographs from commercial sample)

Point source of conventional OLED manufracture

Full color pattering with small molecular

Small molecules are thermally evaporated in vacuum

R, G, B pattering is defined by shadow masking in vacuum

Full color pattering with small molecular

- Photoresist is used for both the bases and the pillars.
- Pillars: separators for automatic organic and cathode pattern
- Bases: insulators to prevent shorting between the cathode and anode layers.

Evaporation Sources

Small Area

Low Materials Usage

Large Area

High Materials Usage

Developed by ULVAC

Linear source and substrate

Point and Linear source considerations

Point Sources

Production design must make tradeoffs between uniformity, source-to-substrate distant and off-axis location, effective material utilization, deposition rates, productivity and operating ratio

Linear Sources

Improved deposition rate is due to reduced source-to-substrate distance, Same or better uniformity than point sources, and better material utilization

Linear source requirements

- Rates from 0.1 Å/sec for dopants to 100 Å/sec for hosts
- Storage of operating material for many days protect this material from heat until needed
- Uniformity within +/-5% of aim across width of substrate
- Easy to remove, clean, load, and replace
- Stable operation over many days no clogging, easy to control

Linear Evaporation Source

US Patent 6,237,529

Production Source

Designed for Deposition on 300 x 400 mm Substrates

Host linear source deposition uniformity

Designed for Deposition on 300 mm Substrates Widths (Boat length = 500 mm, Aperture = 440 nm)

Dopant linear source deposition uniformity

Designed for Deposition on 300 mm Substrates Widths (Boat length = 500 mm, Aperture = 440 nm)

Linear source results

(300 x 400 mm substrates)

Red lines are specifications

Data from SK Oct. 2002 Production

Mass Production of AMOLED Full Color Display

Fabrication Using Linear Source Deposition of Organic Layers

- A. SK Display has developed two models
- a) 2.2" cell phone display
- b) 2.2" camera display
- c) More models under development
- B. Sample shipments were made throughout 2002 to key customers, in support of product development

Kodak markets EasyShare LS633 DSC with 2.2" AMOLED In March 2003

Manufacturing Status

- October 2001: Zelda 450 pilot line commissioned
- 2002: Sample shipments to Sanyo & Kodak
- October 2002: Mass Production started
- March 2003: Kodak introduces LS633 DSC with OLED display
- July 2003: Capacity expansion
- October 2003: Sanyo showcases many OLED display models for DSC & cell phone applications
- January 2004: Zelda 650 full production line commissioned

Zelda 450 Photos

Linear source deposition

ULVAC Zelda 450 300 x 400 mm substrate

ULVAC Zelda 650 335 x 550 mm substrate

OLED Products on the Digital Carera

Kodak LS633

LTPS (Sanyo)+OLED(Kodak)
(SK Display)

Resolution: 2140x1560 pixels

Display: 2.2 inch OLED

Manufacture of PLEDs

Spin-coating or ink-jet printing

Inkjet Printing

Photolithographic barriers for definition
Printing PEDOT & drying
Printing polymer & drying

Principle of Piezoelectric Inkjet-printing

- uses a piezoelectric crystal to push and pull a diaphragm adjacent to the firing chamber
- creates a physical displacement that ejects the ink - difficult to control for printing small drops results in imprecise placement of broken drop of ink
- mechanically moves the mass of diaphragm and the ink- available force determines the frequency of operation
- mechanical manufacturing processes make miniaturization more difficult to achieve - typically have lower nozzle density

Principle of thermal bubble Inkjet-printing

- thin film resistor is located in the center of each firing chamber floor.
 This resistor is a tiny electrical heater that gets extremely hot when we pass electricity through it
- each resistor is 60 microns
 (millionths of a meter) or smaller on each side but power density on its surface is 1.28 billion watts per square meter more than on the surface of the sun!

2004 SID seminar lecture note

Scheme of an ink Jet head

Ink jet printing on the substrate

- Drop must hit the surface and fill the active area.
- The dried layer must form a flat film.
- Structures on the substrate are used to confine the fluid in subpixels.
- These structures are pretreated to avoid overflow between subpixels.

Printing Polymer (specifications)

- Uniform droplet volumn
- Straightness to less than ±10mrad (10μm deviation at 1mm distance)
- Uniform droplet speed (3-8 m/s)
- -- For predicting landing position

Layer Uniformity

2004 SID seminar lecture note

Layer Uniformity

Ink jet vs. spincoated device

Litrex RGB inkjet line

RGB inkjet line

Innoled/OTB/CDT fully integrated in-line system Clean room is NOT required

Gen 7 ink-jet-printing system is under development (Litrex Corp.)

J. Halls, Information Display, 21, (2), p15