ORGANIC ELECTRONICS LAB

Organic light-emitting diodes

Basic Device Physics and Materials

Fang-Chung Chen
Department of Photonics and Display Institute
National Chiao Tung University

Device structure of OLEDs

Devices were fabricated by thermal evaporation

Drive voltage ~5V

QE: ~1%; 3 cd/A (green)

Fast response time (<1 μsec)

Operating mechanism of OLEDs

Mechanism involves:

1: Charge injection

2: Charge transport

3: Charge recombination (Exciton formation)

Electrical field: >10⁵ V/cm

100 nm; @~1V

Operating mechanism of OLEDs

LUMO (Conduction band)

Typical multilayer-device structures

ETL, electron-transport layer EML, emissive layer HTL, hole-transport layer

Operating mechanism of PLEDs

Devices were fabricated by spin-coating Single emissive layer was used

PEDOT:PPS

What is PEDOT:PSS?

PEDOT:PSS is a hole-transporting conductive polymer Deposited from an aqueous suspension

 $\rho \sim 1000 \text{ to } 100000 \Omega\text{-cm}$

Work function ~ 5.0±0.2 eV

ITO work function depends on the surface treatment ITO surface is often full of spikes

PEDOT:PSS (~ 100 nm) both planarizes the surface and stablizes the work function of the anode of the PLEDs It is one of the keys to reproducible devices

PEDOT:PPS

Single layer organic EL device

Very common for PLEDs

The material should be "bi-polar"

Small molecule and Polymer OLEDs

smOLEDs:

Evaporation of a multilayer stack of small organic molecules (Mw ~ several 100)

PLEDs:

Spincoating/inkjet printing of polymers (Mw ~ 50,000 – 500,000)

I-V characteristics

Why PLEDs?

- Easy and low-cost fabrication
- Solution processability
- Light weight and flexible
- Easy color tuning
 - **✓** Spin-coating for mono-color display
 - **✓** Ink Jet printing for multi-colors display

Efficiency of Organic EL Devices

$$\eta_{\text{ext}} = \eta_{\text{int}} \, \eta_{\text{p}} = \gamma \, \eta_{\text{r}} \, \varphi_{\text{f}} \, \eta_{\text{p}}$$

$$\sim 100\% \sim 25\% \sim 100\% \sim 20\%$$

Maximum external quantum efficiency is ~5%

 η_{ext} : external quantum efficiency

 η_{int} : internal quantum efficiency

 η_p : light out-coupling efficiency

 γ : charge carrier balance factor (e/h)

 η_r : efficiency of exciton production

 $\varphi_{\rm f}$: internal quantum efficiency of luminescence

η_p : light out-coupling efficiency

due to total internal reflection loss

$$\eta_p = 1 / (2n^2)$$

n: reflection index of the emissive medium

If n ~ 1.5
$$\eta_p = 22\%$$

γ : charge carrier balance factor (e/h)

J: circuit current

J_r: current used for charge recombination

$$J = J_h + J'_e = J_e + J'_h$$

 $J_r = J_h - J'_h = J_e - J'_e$

η_r : efficiency of exciton production

$\varphi_{\rm f}$: internal quantum efficiency of luminescence

$$\varphi_{\rm F} = \frac{k_{\rm F}}{k_{\rm F} + k_{\rm I} + k_{\rm T} + k_{\rm O}}$$

Typical I-L-V curves of an Alq3-based OLED

L. S. Hung and C. H. Chen, Mater. Sci. & Eng. R 39, 143 (2002)

Manufacture of OLEDs

Thermal evaporation

Manufacture of PLEDs

Spin-coating or ink-jet printing

Ink-jet printing to pattern polymers

Ink Jet printing to define and pattern R, G, B emitting subpixels

Efficiency of organic EL Devices

Quantum efficiency: $\eta_{ext} = \eta_{int} \ \eta_p = \ \gamma \ \eta_r \ \varphi_f \ \eta_p$

 $\eta_{\rm ext}$: external quantum efficiency

 η_{int} : internal quantum efficiency

 η_p : light out-coupling efficiency

 $\hat{\gamma}$: charge carrier balance factor (e/h)

 η_r : efficiency of exciton production

 $\varphi_{\rm f}$: internal quantum efficiency luminescence

Power efficiency: optical power output electrical power input

$$\eta_{\text{pow}} = \eta_{\text{ext}} E_{\text{p}} U^{-1}$$

E_D: the average energy of the emitted photons

U: the known values of the applied voltage

(lm/W), important for engineer and system design

Efficiency of organic EL Devices

Luminous efficiency: $\eta_{lum} = \eta_{pow} S$

S: the eye sensitivity curves

Current efficiency (Cd/A), important for material evaluation

Efficiency of organic EL Devices – an Example

Device current density: 50 mA/cm² at 10V

Brightness: 3500 cd/m²

Current Efficiency:

$$\frac{3500 \text{ cd/m}^2}{50 \text{ mA/cm}^2} \times \frac{1}{10} = \frac{7 \text{ cd/A}}{10}$$

Power Efficiency:

$$\frac{7 \text{ cd/A}}{10 \text{ V}} \times \pi = 2.2 \text{ Im/W}$$

Definitions of Efficiencies of OLEDs

Table 1. Definitions of efficiencies used in OLED characterization.

Quantity	Symbol	Units	Expression
OLED Efficiencies:			
External Quantum	$\eta_{ m ext}$	_	$\frac{q \int \lambda I_{\text{det}}(\lambda) d\lambda}{\text{hc} f I_{\text{OLED}} \int R(\lambda) d\lambda} = \frac{\int \lambda I_{\text{det}}(\lambda) d\lambda}{f I_{\text{OLED}} \int \lambda \eta_{\text{det}}(\lambda) d\lambda}$
Internal Quantum	η_{int}	-	$\eta_{ m ext}/\eta_{ m c}$
Wall Plug	$\eta_{\mathrm{W/W}}$	_	$P_{\text{OLED}}/I_{\text{OLED}}V$
Luminous Power	η_{P}	lm/W	$L_P/I_{OLED}V = \frac{\phi_0 \int g(\lambda)I_{det}(\lambda)/R(\lambda)d\lambda}{fI_{OLED}V}$
Luminance	$\eta_{\rm L}$	cd/A	AL/I_{OLED}
Detector Efficiencies:			
Responsivity	R	A/W	$I_{\text{det}}/fP_{\text{OLED}} = I_{\text{det}}/P_{\text{inc}}$
External Quantum	$\eta_{ m det}$	-	$\mathrm{hc}R/q\lambda$

Definition of terms: λ = wavelength; $I_{\text{det}}(\lambda)$ = photocurrent detected for light incident at wavelengths between λ and λ + d λ ; $R(\lambda)$ = incremental detector responsivity wavelengths between λ and λ + d λ ; $P_{\text{inc}}(\lambda)$ = power incident on the detector wavelengths between λ and λ + d λ ; q = electronic charge; h = Planck's constant; c = speed of light in vacuum; f = OLED-to-detector coupling factor (<1); P_{OLED} = total optical power emitted by the OLED; I_{OLED} = OLED current; ϕ_0 = peak photopic response of the eye; $g(\lambda)$ = photopic response shape function; V = OLED drive voltage to obtain I_{OLED} ; L_{P} = OLED luminous power [lm]; L = OLED luminance [cd/m²]; A = OLED active area.

- 1. High glass transition temperature (T_q)
- 2. Electrochemically stable
- 3. Thermally and optically stable
- 4. High electron or/and hole mobility
- 5. High photoluminescent
- 6. Formation of uniform thin films
- 7. Easy synthesis and purification

Glass transition temperature (Tg)

T_g: the Temp. at which the glass transforms from a rigid solid to a supercooled, albeit very viscous, liquid

Specific volume: Volume per unit mass

Hole transporting materials

aromatic diamine: good hole injection and transporting capability electron blocking capability

Vac TBD,
$$Tg = 60^{\circ}C$$

TBD, $Tg = 60^{\circ}C$

THIL ETL Mg/Ag

Mg/Ag

m-MTDATA, $Tg = 75^{\circ}C$
 α -NPD, $Tg = 98^{\circ}C$

PPD, $Tg = 146^{\circ}C$

High T_q can insure stable and pinhole free film

Device performance of double hole HTLs

	m-MTDATA/TPD	TPD
Driving voltage (V)	5.4	6.3
Current density (mA/cm ²)	7.1	9.0
Efficiency (lm/W)	2.3	1.6

double hole transport layers

Electron transporting materials

good electron injection and transporting capability hole blocking capability

Tg = 170°C thermally and morphologically stable

Electron transporting materials

Oxadiazole: ETL and hole blocking layer (large band gap)

$$R^1$$
 N
 R^2

TAZ:
$$R^1 = t$$
-Bu; $R^2 = H$

starburst oxadiazole

Disadvantage: high electron injection barrier

They are also called light-emitting polymers (LEPs)

PPV precursor

PPV, first material for PLEDs green light (λ = 520 & 550 nm) insoluble Partially crystalline in the film

MEH-PPV MeO 13 14 (red-orange)

The side chain enhance the solubility in organic solvents

D. Braun and A. J. Heeger, **APL**, 58, 1982, (1991)

Tuning of properties (band gap and solubility) can be achieved via substitution

Blue materials

PPP 9

insoluble

10

ITO/PVK/10/Ca

~ external 4%

PVK 11

usually served as holetransporting/injection material

$$\bigcap_{\mathsf{R}} \bigcap_{\mathsf{R}} \bigcap_{\mathsf{R}}$$

9,9-dialkyfluorenes

Performance of PPV-based PLEDs with various Emissive colors

LED	Configu	uration
------------	---------	---------

ITO/MEH-PPV/Ca Single layer device

ITO/PPV/Ca Single layer device

ITO/PVK/DO-PPV/Ca Bilayer device

Device Characteristics

~2% external QE; 2-3 lm/W; Orange-red color

~2% external QE ~2 lm/W Yellow-green color

~4% external QE

Device Lifetime

2,500 h with > 400cd/m² initial brightness. tested in inert gas environment

1,000 h with > 100 cd/m² initial brightness, encapulated device tested in air

Not available

Hole injection materials (conducting polymer)

Transparent to visible light

Y. Yang et al. JAP, 77, 694, (1995)

PEDT/PSS

An aqueous gel dispersion Smooth the ITO surface (reduce the electrical shorts) Promote the hole injection

Electron transporting materials

$$C_{6}H_{13}O$$

$$C_{7}O$$

$$C_{1}O$$

$$C_{1}O$$

$$C_{1}O$$

$$C_{1}O$$

$$C_{1}O$$

$$C_{1}O$$

$$C_{2}O$$

$$C_{1}O$$

$$C_{2}O$$

$$C_{3}O$$

$$C_{4}O$$

$$C_{1}O$$

$$C_{1}O$$

$$C_{2}O$$

$$C_{3}O$$

$$C_{4}O$$

$$C_{5}O$$

$$C_{6}O$$

$$C_{6}O$$

$$C_{6}O$$

$$C_{6}O$$

$$C_{6}O$$

$$C_{6}O$$

$$C_{7}O$$

$$C_{7$$

CN-PPV, 590 nm (2.1eV) ITO/PPV/CN-PPV/cathode

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ &$$

PPyV 31

ITO/PPV/PPyV/cathode

Charge Balance

Polymer for RGB

Performance of PF-based PLEDs with various Emissive colors

Typical Device Data¹

Performance @ 200 cd/m²

Efficiency (cd/A): 1.3 Drive Voltage (V): 3.6

Current Density (mA/cm2): 16.2

Performance @ 1,000 cd/m²

Efficiency (cd/A): 0.9 Drive Voltage (V): 6.2

Current Density (mA/cm2): 110.1

Device architecture may be further optimized to improve performance.

Performance of PF-based PLEDs with various Emissive colors

Examples of Fluorene-based Red and Green LEPs

Table	l: Rep	resentative	Examples	of Fluorene	-Based	Red a	nd Gree	∍n
57.		Ele	ctrolumines	cent Polym	iers.			

Electroluminescent Polymers.					
Emission Color	Red	Green			
Structure	R A S OR CN				
5 H N	H = 2 - ethythexyl $X: y = 0.1.5%: 17.5%$	H = n·octyl			
Polymer Name	Poly[9,9'-bis(2'-ethylhexyl)fluorene-	Poly[(9,9'-dioctylfluorene-2,7-diyl)-			
e **	2,7-diyl-co-2,5-bis(2-thienyl-1-cyanovinyl)-1-(2'-ethylhexyloxy)-	alt-benzothiadiazole]			
30 SES 48	4-methoxybenzene-5"-5"-diyl]				
Reference	41	42			
UV/PL/EL	379 nm (film)/620 nm (film)/630 nm	/545 nm (film)/545 nm (film)			
(λ_{max})					
Efficiency	ϕ_{PL} 34% (solution)	ϕ_{EL} 3.86% (external) at			
		5000 cd/m ²			
Light Switch-On (V)	5.V	7V			
Device Structure	ITO/PEDOT:PSS/polymer/LiF/Ca	ITO/polymer/Al			
Polymer	M _n 22 K, MWD 2.7 (PS standards)	Alternating fluorene-thiadiazole			
Characteristics	statistical copolymer	copolymer			

Notes: PL is photoluminescence; EL is electroluminescence; ϕ is quantum yield; ITO is indium tin oxide; PEDOT: PSS is poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate).

Examples of Fluorene-based Blue LEPs

Table II: Representative Examples of Fluorene-Based Blue Electroluminescent Polymers.

	Electroluminescent Polymers.	
Emission Color	Blue Blue	
Structure		
	-OO	•
al al a	H = 2-ality/hexyl $H = n$ -octyl	
Polymer Name	Poly[9,9'-bis(2-ethylhexyl)fluorene- Poly(9,9'-dioctylfluoren	e-2,7-diyl)
	2,7-diyl] end-capped with N,N'- (PF8, PFO)	
	bis(4-methylphenyl)-N-phenylamine	
Reference	43 44	
UV/PL/EL	//420 nm, 440 nm 380 nm (film)/420 nm	(film)/
(λ_{max})	.440 nm	5 6 53
Efficiency	1.1 cd/A at 8.5 V φ _{EL} 1.3 % (external) at	
	200 cd/m ²	
Light Switch-On		ÿ
(V)	3.5 V 2.7 V	
Device Structure	ITO/PEDOT: PSS/polymer/Ca ITO/PEDOT: PSS/poly	mer/Ca
Polymer	M _n 48 K, MWD 1.6 (PS standards) M _n 43 K, MWD 1.4	,
Characteristics	linear homopolymer (end-capper feed (PS standards)	
	ratio: 4 mol%) linear homopolymer	

Notes: PL is photoluminescence; EL is electroluminescence; ϕ is quantum yield; ITO is indium tin oxide; PEDOT: PSS is poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate).

Polymer degradation

Photo-oxidation of polymer

Loss of double bond (conjugation)

Reliable issues for OLEDs

Anode contacts
Excited state reactions
Crystallization
Thermal stability
Self-heating in operation
Impurities
High local field
Reaction of cathodes with moisture

Summary

Small Molecular LEDs

Blue C)E= ~5%	5~8 lm/W	over 10,000 hrs ($(@1000cd/m^2)$)

Green
$$QE = ~5\%$$
 $10~15 \text{ lm/W}$ over 10,000 hrs

Red QE=
$$\sim 2-3\%$$
 1 ~ 3 lm/W over 10,000 hrs

Polymer LEDs

Blue QE=
$$\sim 5\%$$
 2.5 lm/W 5,000 hrs (@1000cd/m²)

Green
$$QE = \sim 5\%$$
 15 lm/W over 10,000 hrs

Red QE=
$$\sim 2-3\%$$
 1 ~ 3 lm/W over 10,000 hrs