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DNA-programmable nanoparticle crystallization
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It was first shown1,2 more than ten years ago that DNA oligonu-
cleotides can be attached to gold nanoparticles rationally to direct
the formation of larger assemblies. Since then, oligonucleotide-
functionalized nanoparticles have been developed into powerful
diagnostic tools3,4 for nucleic acids and proteins, and into intra-
cellular probes5 and gene regulators6. In contrast, the conceptually
simple yet powerful idea that functionalized nanoparticles might
serve as basic building blocks that can be rationally assembled
through programmable base-pairing interactions into highly
ordered macroscopic materials remains poorly developed. So far,
the approach has mainly resulted in polymerization, with modest
control over the placement of, the periodicity in, and the distance
between particles within the assembled material. That is, most of
the materials obtained thus far are best classified as amorphous
polymers7–16, although a few examples of colloidal crystal forma-
tion exist8,16. Here, we demonstrate that DNA can be used to con-
trol the crystallization of nanoparticle–oligonucleotide conjugates

to the extent that different DNA sequences guide the assembly of
the same type of inorganic nanoparticle into different crystalline
states. We show that the choice of DNA sequences attached to the
nanoparticle building blocks, the DNA linking molecules and the
absence or presence of a non-bonding single-base flexor can be
adjusted so that gold nanoparticles assemble into micrometre-
sized face-centred-cubic or body-centred-cubic crystal structures.
Our findings thus clearly demonstrate that synthetically pro-
grammable colloidal crystallization is possible, and that a single-
component system can be directed to form different structures.

From a surface receptor standpoint, gold nanoparticles can be
programmed to behave as a single-component or binary system by
using the sequence-specific recognition properties of DNA (Fig. 1a)
and designing DNA linkers with two different regions (Fig. 1b and c).
In a typical experiment, gold nanoparticles (15 nm in diameter) are
modified with synthetic oligonucleotides17 and then linker DNA
is introduced; the latter contains a region 1 complementary to the
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Figure 1 | Scheme of gold nanoparticle assembly
method. a, Gold nanoparticle–DNA conjugates
can be programmed to assemble into different
crystallographic arrangements by changing the
sequence of the DNA linkers. b, Single-
component assembly system (f.c.c.) where gold
nanoparticles are assembled using one DNA
sequence, linker-A. c, Binary-component
assembly system (b.c.c.) in which gold
nanoparticles are assembled using two different
DNA linkers -X and -Y. X in the DNA sequence
denotes the flexor region: A, PEG6 or no base.
NP1 indicates that the same gold nanoparticle-
DNA conjugates were used in all experiments.
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gold-nanoparticle-bound DNA, and a region 2 that acts as a dangling
end and can be varied to control the interactions between the gold
nanoparticles. In all cases, region 1 is significantly longer than region
2, and therefore the duplex formed from hybridization with region 1
is more stable than the duplex formed from hybridization with region
2. This allows region 2 to be thermally addressable without signifi-
cantly perturbing region 1 (ref. 18). By designing a linker sequence in
which region 2 is self-complementary, the nanoparticles will effec-
tively behave as a single-component system (Fig. 1b). Alternatively,
by designing a linker with a non-self-complementary region 2, an
additional, different linker is required to achieve particle assembly
(Fig. 1c). From a surface receptor standpoint, the latter design creates
a binary system in which gold nanoparticles hybridized to linker-X
(AuNP-X) can only bind to gold nanoparticles hybridized to linker-Y
(AuNP-Y). Between region 1 and 2, a non-binding single DNA base,
called a flexor, is added (typically adenosine, A). As discussed later,
the flexor plays a crucial role in DNA-programmable nanoparticle
crystallization.

The ability to simulate a single-component or binary system with-
out the irreversible chemical alteration of the gold nanoparticle–
oligonucleotide conjugate is a unique aspect of this system. From
an energy minimization standpoint, it is expected that the gold nano-
particle assemblies will maximize the number of hybridized DNA
linkages by adopting a conformation that will maximize the number
of nanoparticle nearest neighbours. In a single-component system, in
which each particle can bind to every other particle with equal affi-
nity, a close-packed face-centred-cubic (f.c.c.) structure is expected
to form wherein each particle has 12 nearest neighbours. Alter-
natively, in a binary system, where AuNP-X can bind only to
AuNP-Y, the maximum number of hybridization events is achieved
in a non-close-packed body-centred-cubic (b.c.c.) structure wherein
each particle has eight nearest neighbours (that is, a caesium chloride
lattice). Should a binary system assemble into a close-packed struc-
ture, each particle will have, on average, less than eight compatible
nearest neighbours through which DNA hybridization can occur (see
also Supplementary Information).

We begin by demonstrating the ability to form close-packed
macroscopic single-crystalline domains using the single-component
nanoparticle system (Fig. 1b). To create a well-defined and close-
packed crystal, weak and reversible interactions are necessary13,19–23.
This is achieved by combining the gold nanoparticles and linker-A
above the melting temperature (Tm) of region 2 (,44 uC) followed
by slow cooling (10 min/1 uC) to room temperature, to ensure that

crystal formation is thermodynamically and not kinetically con-
trolled. Two-dimensional small-angle X-ray scattering (SAXS) data
collected from the resultant particle assemblies display a scattering
pattern specific to a f.c.c. structure (Fig. 2a). In addition to well-
defined scattering rings, individual scattering spots are clearly seen
in the first and second ring indicating the formation of many large
crystallites (Fig. 2b).

The majority of the high-intensity spots reside in the first ring and
display nearly identical q values. The two-dimensional data were
integrated and normalized based on the q value from the first ring
(red line in Fig. 2c). The normalized spot positions were located at
q/q0 < 1,
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retical spectrum (green line in Fig. 2c). Indeed, the averaged structure
factor S(q) (red line in Fig. 2c) is very similar to a theoretical simu-
lation (blue line in Fig. 2c) of the SAXS pattern for a f.c.c. configura-
tion containing a small amount of disorder24 (Supplementary
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mula25 to estimate from the spots in the scattering pattern a size of
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dAu, where
dAu is the distance between the nanoparticle centres. This gives a
measured interparticle distance of 27.9 nm, which falls within the
range of the predicted interparticle distance (28.6–36.1 nm) that
is based on the length of the DNA linkers (Supplementary
Information).

More interesting than the formation of a close-packed structure
is the ability to program the assembly of the same nanoparticles
into a non-close-packed structure. This was achieved by using linkers
-X and -Y, to create a binary system (from the surface receptor
standpoint) which drives the gold nanoparticle assembly into a
non-close-packed b.c.c. structure to maximize the number of DNA
hybridization events (Fig. 1c). The two-dimensional SAXS pattern
for this system clearly indicates a b.c.c. structure (Fig. 3a and b). The
averaged S(q), determined by integration and normalization based
on the q value from the first ring, shows five peak positions at
q/q0 5 1,
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, in agreement with the theoretical
b.c.c. structure (green line in Fig. 3b). In addition to the peak
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Figure 2 | f.c.c. gold nanoparticle
SAXS pattern. a, SAXS pattern of
micrometre-size single-crystalline
domains using a single-component
system. The colour scale indicates
the intensity, I. The image is in log
scale. b, A partial magnification of
a displays individual spots of
increased scattering intensity (red
arrows). c, The integrated data from
a shows an f.c.c. crystal structure.
The x-axis is normalized to the first
peak from a (2.76 3 1022 Å21). The
entire spectrum from c is not shown
in a.
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position, the relative peak heights are consistent with the theoretical
calculations. Using the Scherrer formula, the average size of a
single-crystalline domain was estimated to be about 600 nm (,104

particles) with an average d-spacing of 31 nm (estimated range
29.6–37.1 nm; Supplementary Information).

The binary system discussed above can also form a close-packed
structure, by carefully controlling the temperature at which AuNP-X
and AuNP-Y are combined. If the binary particles are treated in the
same manner as the single-component system by combining AuNP-
X and AuNP-Y above the Tm of region 2 (weak DNA attractive
forces) followed by slow cooling, a substitutionally disordered f.c.c.
structure21 is formed, which presents an f.c.c. scattering pattern
(Supplementary Information). Alternatively, a non-close-packed
b.c.c. structure is achieved by combining AuNP-X and AuNP-Y at
room temperature, below the Tm (,37 uC) of region 2 (stronger
DNA attractive forces) followed by annealing a few degrees below
the Tm.

The formation of the different crystal structures is attributed to a
competition between the entropic and enthalpic contributions
involved in the assembly process at different temperatures. From
an entropic standpoint, a close-packed structure is favoured over a
non-close-packed structure because the entropy of the entire system
can be maximized if the aggregates possess the smallest possible
volume fraction22,26. Therefore, if gold nanoparticles begin to
assemble near the DNA Tm, where the DNA binding strength is very
weak and the enthalpic contribution is small, the entropic contri-
bution will dominate the assembly process and a close-packed struc-
ture forms. However, if the gold nanoparticles are combined several
degrees below the Tm, the enthalpic contribution associated with
DNA hybridization will govern the assembly process and a non-
close-packed structure forms that maximizes the number of DNA
hybridization events.

Gold nanoparticle–oligonucleotide conjugate systems have many
variables that can be adjusted to affect the final structure. In addition

to the DNA sequence as addressed above, DNA rigidity, DNA length
and particle size can be manipulated to influence gold nanoparticle
crystallization without changing the basic properties of the overall
system. To probe the importance of these variables in the crystalliza-
tion process, we began by changing the rigidity of the flexor region
which is not involved in the DNA hybridization. Two variations of
linker-X and -Y DNA were synthesized; one without the A-flexor and
one with a polyethylene glycol oligomer (PEG6) in place of the
A-flexor (Fig. 1c). The absence of the A-flexor should result in a rigid
system while the PEG6-flexor should give a more flexible system. The
first peak in the SAXS pattern from the sample with the PEG6-flexor
is the sharpest, and the sample with no flexor is the broadest, Fig. 3c.
This indicates that the sample with the flexible PEG6-flexor can grow
larger crystals. Also, after similar crystallization times, a more well-
defined crystalline structure arises from the PEG6-flexor (Fig. 3d).
Hence, greater flexibility can enhance the assembly process and
results in a more well-defined crystalline structure.

Next, the effect of DNA length was interrogated by designing a gold
nanoparticle with a shorter DNA sequence in region 1 (12-mer versus
18-mer in Fig. 4a) while maintaining an elevated Tm compared to
region 2. When both AuNP-X and AuNP-Y contain the shorter
region 1 DNA sequence, the result is a b.c.c. structure, similar to
before, only with a shorter interparticle distance. However, the com-
bination of a short region 1 AuNP-X and a long region 1 AuNP-Y
(Fig. 4b), results in a b.c.c. structure that is thermally more stable
(Supplementary Information). This suggests that the aspect ratio
between the effective radii of the binary DNA-linked gold nanopar-
ticles is an important factor in the crystallization process. As the
aspect ratio of the particles decreases from one, a b.c.c. structure
becomes entropically more favoured because the volume fraction
of the b.c.c. structure is reduced22,26 and the f.c.c. structure loses its
entropic advantage as the particles become effectively polydisperse27.
This was further addressed by using small gold nanoparticles (10 nm)
with a short region 1 and large gold nanoparticles (15 nm) with a long
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Figure 3 | b.c.c. gold nanoparticle
SAXS pattern. a, SAXS pattern of
the binary gold nanoparticle system
combined below the Tm of region 2.
The colour scale indicates the
intensity, I. The image is in log scale.
b, The integrated SAXS data from
a shows a b.c.c. crystal structure.
c, Comparison of the first peak
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regions as assembly is initiated.
d, Comparison of the entire SAXS
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region 1 (Fig. 4c). These samples formed crystals with a b.c.c. struc-
ture that exhibit even greater stability, such that the b.c.c. structure
can be achieved independent of pathway (that is, slow cooling from
above Tm versus combining and annealing below Tm) (Supplemen-
tary Information).

In all cases, to create well-defined programmable crystalline struc-
tures using DNA-linked gold nanoparticles, several conditions must
be met. In addition to having control over the strength of the DNA
attractive forces, it is important to have highly monodisperse parti-
cles (,10%). As shown in a dissipative particle dynamics (DPD)
simulation28,29, particles with a polydispersity of 20% do not form
well-defined crystalline assemblies, which is in accordance with our
experiments (Supplementary Information). Therefore, all crystalline
structures presented in this report were obtained using nanoparticles
with polydispersity less than 10%.

These findings demonstrate that DNA-directed assembly affords
powerful and versatile control over the formation of colloidal nano-
particle crystals. We expect that as advances in building valency into
nanoparticle structures through edge- and face-selective modifica-
tion processes mature18,30, the number and type of crystalline struc-
tures accessible through this approach should significantly increase.
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Figure 4 | Changing DNA length and gold nanoparticle size in the binary-
component assembly scheme (b.c.c.). a, Both AuNP-X and AuNP-Y
contain a shorter DNA length in region 1: 12-mer versus 18-mer from Fig. 1.
b, Asymmetric binary gold nanoparticle assembly in which AuNP-X
contains a short 12-mer region 1 and AuNP-Y contains a long 18-mer region
1. c, Asymmetric binary gold nanoparticle assembly in which AuNP-X in b is
a small 10 nm gold nanoparticle and AuNP-Y is a larger 15 nm gold
nanoparticle.
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