Display Technology At DuPont

Peter Compo Managing Director DuPont Displays

DuPont's Approach to Displays

- Apply interdisciplinary materials science and technology to a broad range of display types
- Take a systems approach to innovation by integrating process technology & equipment with materials as needed
- Focus on "direct precision patterning" (i.e., *printing* in its various forms) as a key direction for industry cost reduction

DuPont Displays' Scope

QU PONT.

The Difficulty of Photolithography

Many steps, many cycles

Requires clean room

Wet chemical process

Photomask storage

Very expensive masks

Organic Light-Emitting Diode Displays

Enabling Technology for Solution-Processed OLEDs

The main advantage of OLEDs is a simpler structure

OLEDs may have a significant margin to compete with LCDs on cost

DuPont solution materials lifetime progress

Based on test coupon data, assumes 40% aperture ratio and 55% loss from polarizer

World's first demonstration of full color AMOLED panel with solution printed small molecule technology

Model shows significant cost advantage for solution processed OLEDs

Model conservatively assumes higher costs for OLEDs

OLED-TFT and drivers significantly higher than LCD

10-20% lower yield than LCD

More room for OLEDs to compete if these assumptions prove overly conservative

DuPont DB material improves lifetime and efficiency for solution and evaporated OLEDs

Solution Processed Polymer

	Lifetime (Hours to T_{50})	
	DuPont [™] Buffer	PEDOT:PSSA
Sumation [™] 1303 (L₀ = 1,000 cd/m²)	13,000	1,800
Red polymer (L₀ = 450 cd/m²)	25,000	5,000

Lifetime (Hours to T50)Blue*2 X longer**Green*>5,000 @ 5000 nits

Vapor Deposited Small Molecule Fluorescent Phosphorescent

	Lifetime (Hours to T_{50})
Red I	>120,000 @ 500 nits
Red II	>60,000 @ 500 nits
Green*	3-4 X longer**

*Data from potential customer **As compared to vapor deposited reference device

Thermally Imaged Color Filter System

Materials, Process Technology and Manufacturing Equipment

DuPont Thermal Multilayer Technology

Process Comparison

DuPont Thermal Color Filter Imager

Mass production prototype (gen-7 compatible)

DuPont Thermal Color Filter System Benefits

- Completely dry imaging process
 leverages the advantages of using light
 - No photomasks
 - No liquid handling
 - No delivery nozzles or slots to clog
 - Increased uptime

Greatly simplified process

- Fewer process steps
- Simpler pattern job changeover
- Less cleanroom space

Highly scaleable & adaptable process

- Easy to add incremental capacity
- Increased manufacturing redundancy
- Relatively insensitive to type of substrate (glass/polyester, flexible/rigid, thin/thick, etc.)

Thermal Transfer Technology Roadmap

LCD Enhancements

Our products are designed to "bridge the gap":

We enhance "off-the-shelf" displays so that they can be integrated into the products of customers with challenging industrial applications.

Enhancements Main Product Lines

Direct Bonded Glass to an LCD panel

Comprehensive active and passive LCD enhancements

Illustration of Enhancement

Sunlight Readability

Typical non-enhanced notebook LCD display has a sunlight readable contrast ratio of approximately 1.5 to 1. With DuPont's glass bonding technology the contrast ratio is 4 to 1, an improvement of 266%.

Optical Films & Coatings

High-Performance Materials for the Flat-Panel Displays Industry

A New, High-Priority Program at DuPont

Mission

 Unleash DuPont's practically unlimited range of films, coatings & related technologies and apply them to displays
 It's a natural place where DuPont can bring innovation

Relevant technologies

- Fluoropolymers
- Composite materials
- Photopolymers
- Precision patterning
- Nano-particles

Initial targets

- Anti-reflection
- Reflectors
- Diffusers
- Backlight materials
- Holographic devices

Initial focus: LCDs

Future focus: Expansion into PDP, FED, OLED, emerging

First Two Products Are Under Development

Backlight reflector

- Innovative composite material different than conventional reflectors
- Reflects more blue light CCFL can use less blue phosphor
- Higher overall & diffuse reflectivity it's a better reflector
- Less yellowing due to UV exposure no UV coating needed
- Less change in reflectance due to long-term high temperature

Anti-reflective coating

- Low reflectivity requires a material with a low index of refraction
 - DuPont fluoropolymers have the lowest index of refraction of any material in the world

Thick-Film Technology for PDP & FED

DuPont Fodel® Paste System

Key Ingredient that Allows PDP to Compete with LCD

Fodel[®] thick-film, photo-imageable, paste system

- Paste developed in 1980s
- Patented Ag-black bus system developed in 1990s
- Now the industry-standard metallization process for PDP
- Fodel will enable next-generation emissive thick-film display technologies such as FED (Field Emission Display)

50-micron fine-line resolution for HDTV

- High yield
- Low cost
- Simple process

DuPont Fodel® Thick-Film Pastes in PDP Structure

Comparison of Fodel® and TMT Processes

Fodel® Screen-Printable/Photo-Imageable Paste

How TMT Works

TMT Makes the "Key Ingredient" Even Better

Thank You!

