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Polymer LED Devices

Transparent anode (e.g. ITO)

Glass/Plastic substrate

Thin (<100 nm) emissive 
layer of polymer (LEP)

Low workfunction metallic 
cathode

Transparent hole transporting 
layer (PEDOT/PSS) (70 – 200 
nm)

~ 3-5 V DC

Simple device structure
Uniform, area Emitter
Flexible devices possible
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PLED Materials and Fabrication

Polymer semiconductors are solution 
processable materials
Colour tuning through molecular design
Wide range of deposition processes 
feasible
Low manufacturing and plant cost
Efficient materials utilisation
Compatible with flexible substrates

Printer NozzlesPrinter Nozzles
Ink-Jet Printing

ITO PEDOT Active layer Cathode

Encapsulation

Substrate
Completed modules

ITO PEDOT Active layer Cathode

Encapsulation

Substrate
Completed modules

Roll-to-roll processing



6© CDT 2004

IntroductionIntroduction

Understanding Understanding PLEDsPLEDs

PLED Performance DevelopmentPLED Performance DevelopmentTri Layer Tri Layer PLEDsPLEDs

PLED Manufacturability DevelopmentPLED Manufacturability DevelopmentSinglet:TripletSinglet:Triplet RatioRatio

ConclusionsConclusions



7© CDT 2004

Blue Lifetime Progress
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Basic Device Structure

PE
D
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PSS

Cathode i.e.
Ca/Al
Ba/Al

LiF/Ca/Al

Anode
ITO

PE
D

T:
PS

S

Note: PEDT:PSS is disordered metal with ~ 0.3 charges per PEDT unit, it is not a 
semiconductor

Continuum of unoccupied states

Continuum of occupied states

Neutron Scattering on deuterated PEDT:PSS shows that the surface is PSS rich,
Circa 5 - 10 nm thick
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Ideal Device Operation
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Electron Injection

Hole Injection

Cathode

Anode

Electrons and Holes 
Recombine

forming
Excitons

Emission Zone

Light Emission

Holes are injected into the LEP Layer
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Device Reverse Engineering

CDT has developed techniques for reverse   
engineering PLED devices – layer by layer

The cathode is removed by an acid wash
Exposing the LEP surface

The soluble LEP is removed by solvent wash
Exposing PEDT:PSS surface for un-driven devices
Exposing insoluble LEP for driven devices

Insoluble and soluble LEP can be lifted off by dissolving 
PEDT

Thus LEP can be examined separately

Reverse Engineering Helps CDT Understand  Degradation

New
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r M
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ed
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PL decay and insoluble layer

PL intensity is reduced with driving
Insoluble layer remains after cathode removal and solvent 

rinse

0.5
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SCB11/11c from 40mA/cm2

After solvent 
rinse PEDT 
exposed for 
un-driven 
devices

After acid 
rinse LEP 
Exposed

Photoluminescent Images

Driven Pixel
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PL decay – single carrier devices

SCB bipolar

Pixel 2 - 960hrs at 4mA/cm2 

SCB hole only device

Pixel 2 - 960hrs at 4mA/cm2 Pixel 
3 - 290hrs at 32mA/cm2

Photoluminescent Image of Driven and un-Driven Devices

PL does not seem to decay in hole only devices despite 5 times charge fluence

Results suggest no PL decay in electron only devices either
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Insoluble layer and EL decay

Results so far 
suggest insoluble 
layer thickness 
correlates with EL 
decay, but not with 
PL decay
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Insoluble layer properties

Lower PL yield than  

pristine films

Spectral shifts – blue  

shift often observed, 

but looks like could be 

an artefact

Solubility – insoluble 

in THF, MeOH, acetone, 

xylene – heated for 

30mins
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Time Resolved Spectroscopy

Work done at the Cavendish Laboratory
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Test Structure:
PEDT:PSS/Green LEP
Where LEP Thickness is 25 – 200 nm

Measure Exciton Lifetime

Observation:
Shorter Lifetime for thin LEP
I.E. PEDT Quenches Excitons
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Electrical modelling: Blue Device
Integrated with experiment – fit device I-V characteristics
Determine injection mechanisms, charge balance & exciton formation 
zone profile
As a function of device geometry and layer materials

At low voltage mh > me
RZ towards cathode

V > 2.8, me > mh
RZ towards anode

@ Operating Point 
exciton formation zone 
adjacent to PEDTN
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Au-negative
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Summary

Insoluble LEP layer forms with driving of device
Thickness correlates with EL decay very well
Growth from PEDT:LEP interface

Holes show no evidence of degradation
LEP or PEDT

Electrons show no evidence of degradation in LEP
Insignificant PL spectrum change
Exciton Formation near PEDT:LEP Interface

Therefore Electron Accumulation
Significant Exciton Quenching at PEDT:LEP Interface

Evidence for change in PEDT with Electron InjectionNew
 o

r M
od

ifi
ed
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Proposed Device Decay Mechanism

Some electrons/excitons injected into PEDT:PSS

PSS
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dacays Cathode

Anode

Resulting in damage to PEDT:PSS 
Residues diffuse into the LEP Layer
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Some electrons/excitons injected into PEDT:PSS
Device Decay Mechanism

As time passes insoluble 
Layer keeps on

growing

Insoluble Layer Grows
EL and PL Reduced

Anode

Resulting in damage to PEDT
Residues diffuse into the LEP Layer
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PLED Progress-Blue Lifetime

Additional buffer layer inserted 
between PEDOT:PSS and emissive 
layer

Inhibit e- injection into  
PEDOT:PSS
Reduce exciton quenching at 
anode

Interlayer is a polymer 
semiconductor deposited by 
solution processing

Compatible with ink jet 
printing Substrate

Cathode

ITO

LEP

PEDOT

Interlayer
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Time Resolved Spectroscopy

Work done at the Cavendish Laboratory

Test Structure:
PEDT:PSS/Interlayer/Green LEP
Where LEP Thickness is 25 – 200 nm

Observation:
Reduced Quenching at PEDT
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Dow LUMATION™ LEP Materials
Efficiency Increases

SCB 11
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Lifetime Increases with interlayer

SCR2 Luminance Decay from  400Cd/m2, 80C Dow Green K2 Luminance decay from 400Cd/m2, 80C
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Insoluble layer – Kinetics

Interlayer Improves efficiency, lifetime, dV/dt and delays insol layer formation

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

Green from 4000Cd/m2

65688
65689
65692

In
te

ns
ity

hrs

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

Green + TFB from 4000Cd/m2

66740
66741
66744

In
te

ns
ity

hrs

0

1000

2000

0 50 100 150 200 250

Green Insol PL

65688
65689
65692

In
te

ns
ity

hrs

0

1000

2000

0 50 100 150 200 250

Green + TFB Insol PL

66740
66741
66744

In
te

ns
ity

hrs

0

2

4

6

8

10

0 50 100 150 200 250

65688 Voltage

65688
65689
65692

D
riv

e 
Vo

lta
ge

hrs

0

2

4

6

8

10

0 50 100 150 200 250

GreenK2 with TFB Voltage

66740
66741
66744

D
riv

e 
Vo

lta
ge

hrs

In
so

lu
bl

e 
La

ye
r 

G
ro

w
th

 (
A

rb
. U

ni
ts

)

D
ri

ve
 V

ol
ta

ge
D

ri
ve

 V
ol

ta
ge



33© CDT 2004

Evidence for proposed mechanism
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Devices fabricated with emissive polymers with different hole 
transport properties
Recombination zone moves towards anode as hole transporting 
properties are reduced

Improved hole transport properties

Interlayer

No 
interlayer

Interlayer has biggest 
impact on lifetime 
when recombination 
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Confirms possibility of 
exciton quenching and 
electron damage at the 
PEDOT interface

Anode Cathode
Recombination  zone 



34© CDT 2004

Blue Lifetime Progress

Mobile applications
now feasible
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200 cd/m2 Peak Luminance

7” Diagonal

>20 khr lifetime

~2.4 W Average Power

Blue Lifetime Progress

Mobile applications
now feasible
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RGB Performance – DC Lifetime

At 100 cd/m2

CIE-x CIE-y V cd/
A

Lm
/W

C
athode

Interlayer

Ba

Ba

Ba

Ba

Ba

Y

Y

Y

N

N

Green 0.43 0.55 3.4 7.7 7.0 2912 hrs at 2000 cd/m2 >190,000 1.1

Orange 0.58 0.42 3.4 0.9 0.8 8138 hrs at 1000 cd/m2 >300,000 3.8

Measured Lifetime 
(hrs at RT)

Extrapolated 
Lifetime at 

100 cd/m2, RT

dV 
to 

half 
life 
(V)

Red 0.68 0.32 3.6 1.7 1.5 1790 hrs at 2000 cd/m2 >210,000 1.6

Blue 0.16 0.22 5.5 6.9 3.9 >1147 hrs at 800 cd/m2 >75,000 1.0

Yellow 0.50 0.49 4.5 2.1 1.5 2420 hrs at 4000 cd/m2 >250,000 2.4
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RGB Performance – DC Lifetime

At 100 cd/m2

CIE-x CIE-
y V cd/

A
Lm/
W

C
athode

Interlayer

Ba

Ba

Ba

Ba

Ba

Y

Y

Y

N

N

Green 0.43 0.55 3.4 7.7 7.0 2912 hrs at 2000 cd/m2 ~900 cd/m2 1.1

Orange 0.58 0.42 3.4 0.9 0.8 8138 hrs at 1000 cd/m2 ~900 cd/m2 3.8

Measured Lifetime 
(hrs at RT)

Luminance 
for 

10,000hrs 
Lifetime (DC)

dV 
to 

half 
life 
(V)

Red 0.68 0.32 3.6 1.7 1.5 1790 hrs at 2000 cd/m2 ~700 cd/m2 1.6

Blue 0.16 0.22 5.5 6.9 3.9 >1147 hrs at 800 cd/m2 >300 cd/m2 1.0

Yellow 0.50 0.49 4.5 2.1 1.5 2420 hrs at 4000 cd/m2 ~1300 cd/m2 2.4
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Excited states in polymer LEDs

triplet excitonsinglet exciton

p
+

recombination

radiative
decay
radiative
decay

non-
radiative
decay

non-
radiative
decay

non-
radiative
decay

non-
radiative
decay

( )↓↑−↑↓
2
1 ( )↓↑+↑↓

2
1

↑↑

↓↓

p-

Measure generation and decay of singlets, triplets and charges
to determine singlet:triplet ratio

IF formation probability of singlet and triplet states is identical 
then expect singlet:triplet ratio to be 1:3

Spin = 0 Spin = 1

3 States

Fluorescence Phosphorescence
If Emissive
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Calculation of the singlet-triplet ratio 
in OC1C10 LEDs

Measure triplet induced absorptionMeasure triplet induced absorption Measure EL outputMeasure EL output

Triplet generation rateTriplet generation rate Singlet generation rateSinglet generation rate

Singlet formation probability

07.083.0 ±=
+

=
ts

s
st gg

gr

Note: Work carried 
at the 

Cavendish Laboratory

Several LEPS measured

All have high singlet ratios

Small molecules have only           
25% singlets as expected

Much Higher 
Than Expected
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Singlet-triplet ratio

Recent work from 
Cavendish published in 
Nature

Measurements of 
monomers and polymers 
with the same unit cell and 
identical techniques

Monomers

Rst ~ 0.25

Polymers

Rst ~ 0.5

Direct comparison of monomers and polymers
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Jo Wilson, Anna Köhler, Nature 413, 828 (2001)



43© CDT 2004

Why are polymers different from small 
molecules?

Small Molecules: electron-hole capture at separation » 10 nm 
(Langevin recombination:  Coulomb energy » thermal energy)
weak inter-molecular e-h delocalisation, so only Coulomb interaction involved in e-h 
capture cross-section

Polymers: electron and hole arrival on polymer chain, and subsequent recombination 
to exciton

(i) hole 
capture

(ii) electron 
capture

(iii) electron-hole capture on 
chain

h
e

step (iii) spin-dependent?
- delocalisation of electron and hole wavefunctions along chain allows 
exchange interaction at long range for charges on same chain this 
favours singlet bound state at e-h capture (typical range 10 nm)  
(Beljonne et al J. Chem. Phys. 102, 2042, 1995)
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Small Molecules

Coulomb Attraction

~ 10 nm

Triplet Exciton FormationSinglet Exciton Formation
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Light Emitting Polymers

Couple Monomers Conjugatively

To Make a Light Emitting Polymer

Coulomb Attraction

~ 10 nm

If Spins are ParallelIf Spins are Anti-Parallel

Electron & Hole 
Attraction

Excitons with S=0
Preferentially Formed

Singlet Branching Ratio >> 25%
Long Range Exchange Interaction
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Why is the LEP device Efficiency not 
Higher ?

Because there are other loss mechanisms in the device

Electrons or Holes passing through the device

Exciton quenching at
PEDT/LEP Interface

i.e. Exciton Quenching occurs at PEDT/LEP Interface
Cathode 
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Ad-Vision Results on Thick 
Green/Yellow LEP

Device Structure: ITO/PEDT:PSS (20-30 nm)/LEP (250 nm)/ 
Ca/Al

Data supplied by Dr Melissa Kreger & Professor Sue Carter
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Recombination removed from 
quenching sites such as the 
cathode and PEDT:PSS
EQE > 10 %
IQE > 33 %
PL Efficiency 61 %
Singlet Ratio ~ 50+ %

Note 33 Cd/A (8% EQE) reported 
by TDK, Yamagata University, 
UCLA
This supports the work at the University of Cambridge and suggests 
significant efficiency gains are still possible with optimised device 
design
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Philips Results

Device Structure: ITO/New HTL/Covion Super 
Yellow/Ba/Al

Recombination removed from 
quenching sites such as the 
cathode and PEDT:PSS

EQE > 12 %
IQE > 35 %

Assuming only observe 34% 
of generated light

PL Efficiency 41 %
Singlet Ratio close to 100 %

E A Meulenkamp et al
Philips, Eindhoven, 2004
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Philips Results:Blue Emission

Device Structure: ITO/New HTL/Covion Spiro PF/Ba/Al

Recombination removed from 
quenching sites such as the 
cathode and PEDT:PSS
EQE > 12.5 %
IQE > 36 %

Assuming only observe 34% 
of generated light

PL Efficiency 38 %
Singlet Ratio close to 100 %

E A Meulenkamp et al
Philips, Eindhoven, 2004
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Singlet:Triplet Ratio Summary

More singlets than expected in polymer LEDs 

Understanding loss mechanisms results in significant efficiency 
improvements in LEP diodes

>25% singlet generation probability demonstrated in real 
diodes

For blue: Is this the only way to high efficiency?
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Why is Blue Phosphorescent 
Emission Difficult?

Diffi
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Valence
Band

S1

T1

X

Host Dopant

T1

T1
X

For Blue Emission

360 nm or 3.4 eV
460 nm or 2.7 eV

This
 is

 U
ltra

 Viol
et

3.9 eV

Issues:
Need Stable UV Emitter
Very Large Barriers to Electron and Hole Injection

Conduction
Band
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Singlet:Triplet Ratio Summary

More singlets than expected in polymer LEDs 

Understanding loss mechanisms results in significant efficiency 
improvements in LEP diodes

>25% singlet generation probability demonstrated in real 
diodes

For blue: Is this the only way to high efficiency?

MAYBE
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IntroductionIntroduction

Understanding Understanding PLEDsPLEDs

PLED Performance DevelopmentPLED Performance DevelopmentTri Layer Tri Layer PLEDsPLEDs

PLED Manufacturability DevelopmentPLED Manufacturability DevelopmentSinglet:TripletSinglet:Triplet RatioRatio

ConclusionsConclusions
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Conclusion

Blue lifetime increasing rapidly
> 70,000 hours

Singlet:Triplet Ratio
SMF ~ 25%
P-OLED >> 25%

PLED technology is gathering momentum

CDT is established as the technology leader in this 
space
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