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Polymer LED Devices C ‘ D T

= Simple device structure
* Uniform, area Emitter
* Flexible devices possible

~3-5V DC  — — .
Low workfunction metallic

/ cathode
/

Thin (<100 nm) emissive
layer of polymer (LEP)

\

Transparent hole transporting
layer (PEDOT/PSS) (70 — 200

nm)
u ﬂ Transparent anode (e.g. ITO)

Glass/Plastic substrate
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* Polymer semiconductors are solution
processable materials

* Colour tuning through molecular design

* Wide range of deposition processes
feasible

* Low manufacturing and plant cost
= Efficient materials utilisation
* Compatible with flexible substrates

Ink-Jet Printing
Completed modules - - -
Substrate
PEDOT Active layer Cathode

%-- —

Polyimide Commaon Cathode
LEP Layer

PEDTr’PSS

T

Roll-to-roll processing ..o - - e

TFT Sio, ITO Glass Substrate

y
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Blue Lifetime Progress

How to Improve Blue Lifetime)
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Basic Device Structure C ‘ D T

Note: PEDT:PSS is disordered metal with ~ 0.3 charges per PEDT unit, it is not a
semiconductor PSS

Continuum of unoccupied states

Cathode i.e.
Ca/Al
Ba/Al
—— LiF/Ca/Al
==
=
i
Anode —a
ITO

Continuum of occupied states

Neutron Scattering on deuterated PEDT:PSS shows that the surface is PSS rich,
Circa 5 - 10 nm thick
FPD internatianal © CDT 2004 8




Ideal Device Operation CDT

PSS

ection

Cathode

Light Emission

Electrons and Holes
Recombine
forming
Excitons

Anode

Emission Zone
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Device Reverse Engineering C ' D1

* CDT has develolj)Jed techniques for reverse
engineering PLED devices — layer by layer

The cathode is removed by an acid wash
* Exposing the LEP surface

The soluble LEP is removed by solvent wash
* Exposing PEDT:PSS surface for un-driven devices b
* Exposing insoluble LEP for driven devices

X/
Insoluble and soluble LEP can be lifted off by dissolving .{g\
PEDT O

* Thus LEP can be examined separately @0

Reverse Engineering Helps CDT Understand Deg@ation

&
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PL decay and insoluble layer CDT

Photoluminescent Images
After acid
rinse LEP
Exposed

SCB11/11c from 40mA/cm2

Intensity

After solvent
rinse PEDT
exposed for
un-driven
devices

10

* PL intensity is reduced with driving
* Insoluble layer remains after cathode removyal\and solvent

rinse

Driven Pixel
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PL decay - single carrier devices CDT

Photoluminescent Image of Driven and un-Driven Devices
SCB bipolar SCB hole only device

Pixel 2 - 960hrs at 4mA/cm?2 Pixel 2 - 960hrs at 4mA/cm?2 Pixel
3 - 290hrs at 32mA/cm?2

* PL does not seem to decay in hole only devices despite 5 times charge fluence
* Results suggest no PL decay in electron only devices either
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Insoluble layer and EL decay C DT

. 4
70 2090
| |
60 ® |L thickness green l® 60
N % %{i }0"
50 ; ® I thickness blue ¥ I J. - ; 50 Results SO far
= [ t 1 i
E o | T ! - suggest.msoluble
£ f I ‘.»I 1 & layer thickness
£ w0 f Y s 130 2 correlates with EL
= i consistency between IL - i

P 3 5

20

10

‘0"‘ i :edaitljrments/)yinterfer]onjeter decay, but n0t With
. [ [ / *  PL decay
3 | { | ._{

0 20 40 60
EL decay (%)

FF'D International © CDT 2004 13

—DISPFLAYIMG THE FUTURE—




Intensity

Insoluble layer properties

PL spectrum of Insoluble SCB11

1L
- —undriven
—Insoluble

o
o)

o o
A O

O
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 Lower PL yield than
pristine films

» Spectral shifts — blue
shift often observed,

but looks like could be
an artefact

* Solubility — insoluble
in THF, MeOH, acetone,
xylene — heated for

30mins
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Time Resolved Spectroscopy C DT

30 _I LU Frrrrrrirria I rrrrrrirrid
— Test Structure:
5 [aesteessiinietetestestsnces PEDT:PSS/Green LEP
E 20;:. '::::,........-o.------:: Where LEP Thickness is 25 — 200 nm
g E. ...OO...............; . = u
R ..enn...1 Measure Exciton Lifetime
RN 1 Observation:
R ———— | Shorter Lifetime for thin LEP
E L s o 14 LLE. PEDT Quenches Excitons
B ® d=100nm (S17) 7]
B e d=200nm (S19) | ]
00 _I I T O Y | N T O O Y I | I I T T O | I_
500 550 600 650
et ™ \Work done at the Cavendish Laboratory
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Electrical modelling: Blue Device C ' D'T

* Integrated with experiment — fit device I-V characteristics

* Determine injection mechanisms, charge balance & exciton formation
zone profile
= As a function of device geometry and layer materials

Normalized Exciton Formation Rate

1 -
0.9 -
0.8 1
0.7 -
0.6 -
0.5 -
0.4 -

At low voltage m,> m,
RZ towards cathode

V>28,m,>m,
RZ towards anode

0.3
o \ @ Operating Point
0 , : : , . . exciton formation zone
0 10 20 30 40 50 60 adj acentto PEDT
cathode position in LEP layer (nm) anode
ternati af © CDT 2004 16
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Possible Evidence for Electron DamageC ' DT

MicroRaman analysis

Au-negative
after SOkV/mlcron drlve blas =
8000 [ T _
- after hlgh-voltage bias 3
7000 | oum :
: Oum .
6000 F 2um E
Tg_ - 4um -
& 5000 p 6um .
2 X 8um -
% 4000 | T 10U _normal PEDT :
£ [
£ 3000 :
= -
Z 2000 |
1000 |

Au-positive

400 600 800

1000 1200 1400 1600 reduced PEDT

Raman shift (cm-1)

Work done at the Cavendish Laboratory
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Summary C D _-

* Insoluble LEP layer forms with driving of device

* Thickness correlates with EL decay very well
* Growth from PEDT:LEP interface
Holes show no evidence of degradation

* LEP or PEDT
* Electrons show no evidence of degradation in LEP O

- &
* Insignificant PL spectrum change b{\
* Exciton Formation near PEDT:LEP Interface ®0
* Therefore Electron Accumulation <
* Significant Exciton Quenching at PEDT:LEP @tce)rface
* Evidence for change in PEDT with Electroéﬁ‘-jection

FPD International © CDT 2004 18




Some electrons/excitons injected into PEDT:PSS

PSS

Electron/exciton
dacays

Cathode

Anode

Resulting in damage to PEDT:PSS
Residues diffuse into the LEP Layer

FPD International © CDT 2004 19




Device Decay Mechanism C ‘ DIT

Some electrons/excitons injected into PEDT:PSS
PSS

As time passes insoluble
Layer keeps on

growing
Cathode
Insoluble Layer Grows
EL and PL Reduced
Anode

Resulting in damage to PEDT
Residues diffuse into the LEP Layer
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Device Decay Mechanism C ‘ DIT

Some electrons/excitons injected into PEDT:PSS
PSS

As time passes insoluble
Layer keeps on

Growing
&
Growing
Cathode
Insoluble Layer Grows
EL and PL Reduced
Anode
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Device Decay Mechanism C ‘ DIT

Some electrons/excitons injected into PEDT:PSS
PSS

As time passes insoluble
Layer keeps on

Growing
&
Growing
&
Growing Cathode
Insoluble Layer Grows
EL and PL Reduced
Anode

Resulting in damage to PEDT
Residues diffuse into the LEP Layer
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Device Decay Mechanism C | DIT

Some electrons/excitons injected into PEDT:PSS
PSS

As time passes insoluble
Layer keeps on
Growing
&

Growing
&

Growing
&

Growing

Cathode

Insoluble Layer Grows
EL and PL Reduced

Anode

Resulting in damage to PEDT
Residues diffuse into the LEP Layer
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Device Decay Mechanism C | DIT

Some electrons/excitons injected into PEDT:PSS
PSS

As time passes insoluble
Layer keeps on
Growing
&
Growing
&
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&
Growing
&
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Cathode

Insoluble Layer Grows
EL and PL Reduced

Anode
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Device Decay Mechanism C | DIT

Some electrons/excitons injected into PEDT:PSS
PSS

As time passes insoluble
Layer keeps on
Growing
&
Growing
&
Growing
&
Growing
&
Growing
&
Growing

Anode

Cathode

Insoluble Layer Grows
EL and PL Reduced

Resulting in damage to PEDT
Residues diffuse into the LEP Layer
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Device Decay Mechanism C | D‘T

Some electrons/excitons injected into PEDT:PSS
PSS

As time passes insoluble
Layer keeps on
Growing
&
Growing
&
Growing
&
Growing
&
Growing
&
Growing

Anode

&
GROWING

Cathode

Insoluble Layer Grows
EL and PL Reduced

Resulting in damage to PEDT
Residues diffuse into the LEP Layer
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PLED Progress-Blue Lifetime C ‘ D ‘ T

Cathode

= Additional buffer layer inserted
between PEDOT:PSS and emissive
layer

PEDOT

\

* Inhibit e- injection into
PEDOT:PSS

* Reduce exciton quenching at
anode

= Interlayer is a polymer
semiconductor deposited by

solution processing ITO
* Compatible with ink jet /
printing Substrate
Interlayer
FPD Internatiaornial
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Time Resolved Spectroscopy C ‘ ) 1

R O o o o o e e I IIIIIIIII

Test Structure:

S 'ZI::::Z::::.. o3 PEDT:PSS/Interlayer/Green LEP
E [epdetsenniisiinaniasteetiengy : .
£ pofee st o=+ 7 Where LEP Thickness is 25 — 200 nm
S asf 1 Observation:
s f : Reduced Quenching at PEDT
GI.) 1.00_—. —_
% i e d=25nm (S21)
= o e d=50nm (S23) .
< 05} ® d=85nm (S25) f-—

B ® d=155nm (S27) | T

§ e d=200nm (S29) |

00 Ty I IIIIIIIII I IIIIIIIII
500 550 600 650

Wavelength (nm)

Work done at the Cavendish Laboratory
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one. Dow LUMATION" LEP Materlals
Efficiency Increases

lumatlon
6
SCB 11 —
< S
S 4
)
c 3
b}
o 2
= ~bi-layer
- 1i —tri-layer
0)
2 3 4 5 6 7
Voltage (V)
4 —bi - layer 100000
— —tri - layer
% 31 —tri - layer lumin 10000&&\
L =
32. 1000@
c
Q2 100 8
2 ] =
El NRP5 10 ¢
£
oF—— ;3
O 1 2 3 4 5 6 7
Voltage (V)
F?F%EJJk1tzar11ﬁatw:n1ﬁil
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16T — bi - layer 1000000
_ 1471 —tri-layer
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£
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*.%Lifetime Increases with mterlayerC D T

lumation

SCR2 Luminance Decay from 400Cd/m?, 80C Dow Green K2 Luminance decay from 400Cd/m2, 80C

450 A450 |
&£4OO NE 400 ~ bi - layer
< 3501 S 3501 o
5 350 S tri - layer
L 4 — 3007

300 [

S 550 O 250
S 250 £ 2501
S 2007 = bi - layer < 200
= € 1501
E 1507 ~ tri - layer S ]
S . — 100
2100 co-
50’ 0 . . : . : ' .
0 . : : . . :
0 200 400 600 800 1000 1200 1400 0 200 400 690 800 1000120014001600
Time (hrs) L T T Time (hrs)
400 | Bilayer ]
Trilayer
. —~ 350 _
Blue Luminance Decay §
from 400Cd/m2, RT 3
% 300 |- _
250 [ _
p00 Lo i
0 200 400 600 800 1000 1200
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Insoluble layer — Kinetics

Intensity

Green from 4000Cd/m2
1 T T Ll T ]
—— 65688
0.8} ——65689] ]
—— 65692
06|
041
0.2}
O 1 1 1
0 50 100 150 200 250
hrs
Green + TFB from 4000Cd/m2
1 ' ' ' ‘ ]
——66740
o8l ——66741] ]
> ——66744
o 0.6]
C
9
£ 04}
0.2[
0

0

50

100 150 200 250

hrs

N
o
o
o

H
o
o
o

Green Insol PL

—— 65688
——65689| |
—— 65692

Insoluble Layer Growth (Arb. Units)

50 100 150 200 250
hrs

Green + TFB Insol PL

=
o
o
o

——66740
——66741|
——66744

100 150 200 250
hrs

50

Drive Voltage

Drive Voltage

=
o

CDT

65688 Voltage

®

—e—65688 | |
—=— 65689
—e— 65692

0 50 100 150 200 250

hrs

GreenK2 with TFB Voltage

—&— 66740
—&— 66741
—&— 66744

0 50 100 150 200 250

hrs

Interlayer Improves efficiency, lifetime, dV/dt and delays insol layer formation

PD Internatiarnal
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Evidence for proposed mechanism

* Devices fabricated with emissive polymers with different hole

transport properties

* Recombination zone moves towards anode as hole transporting

properties are reduced

* Interlayer has biggest
impact on lifetime
when recombination
zone is near anode

* Confirms possibility of
exciton quenching and
electron damage at the
PEDOT interface

PD Internatiarnal
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DC lifetime from 400 cd/m?

Anode

Cathode

Recombination zone

1200 -
1000 -
800 -
600 -
400 -
200 A

No

interlayer

Interlayer

>

Improved hole transport properties
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Blue Lifetime Progress

45007
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o
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= Mobile applications

now feasible
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Blue Lifetime Progress

4500r

N
o
o
o

35007

Common cathode (Ba) and interlayer

3000- ®* 200 cd/m2 Peak Luminance

2500 * 22D dggrguaial
« >20 khr lifetime

20001

Time to half luminance from 400 cd/m2

1 70000

1 60000

1 50000

71 40000

from 100 cd/m 2

Extrapolated time to half luminance

1 30000
B ~
500k 24 WMWdnagaoRenwe
1 20000
10007 LiF cathode for blue
5001 1 10000 . . .
= Mobile applications
0 0 .
Dec:00  Dec-0l  Dec-02  Dec-03  Dec-04 now feasible
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RGB Performance — DC Lifetime

cDT

At 100 cd/m?

CIE-x | CIE-y

Measured Lifetime
(hrs at RT)

Extrapolated
Lifetime at
100 cd/m?, RT

apoyied

19Aepu|

dVv
to
half
life
(V)
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RGB Performance — DC Lifetime C ‘ D‘T

At 100 cd/m? Luminance A |5 ?V

Measured Lifetime for % o ) :If

CIE CIE- Vv cd/ | Lm/ (hrs at RT) 10,000hrs o |& lfe
oy A | W Lifetime (DC) | ® |2 V)
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Fluorescence \ / Phosphorescence

If Emissive

)

i
\ W)

non-
radiative
decay

f 3 States

IF formation probability of singlet and triplet states is identical
then expect singlet:triplet ratio to be 1:3

FF'D International © CDT 2004 39
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Calculation of the singlet-triplet rati - .
in OC1C10 LEDs C DrT

Measure triplet induced absorption | Measure EL output

® Several LEPS measured

Much Higher

® All have high singlet ratios
Than Expected

® Small molecules have only
25% singlets as expected

Triplet generation rate | Singlet generjition rate |

v

Singlet formation probability

Note: Work carried

at the
Cavendish Laboratory r, = —2s¢=0.83 +0.07
9s + O
PD Internatiaonal © CDT 2004 40
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Polyfluorene devices - F8BT CDT

1O 135
0.8 1 3.0 photoinduced absorption
— 55 ; — (triplets)
S 06 =
= 1208
= 152
= 115
= 0.4 ¢ | .
11.0
0.2 T
705 ,
I ] device spectrum
0.0 e gV AN | -1 0.0

0.5 1.0 1.5 2.0 2.5
Photon Energy (eV)
* No obvious triplet signal in device
* If we assume lifetime = 0.57 ms (as in PIA), and s, > 2 x 10716 cm?
* < 6% of excitons formed as triplets! Even less if s, larger.
*[ifetime should be confirmed

2004 o ﬂ‘: -ﬂEr'-m{:!atma’ © CDT 2004 41




Singlet-triplet ratio C D'T

Direct comparison of monomers and polymers

® Recent work from

Cavendish published in
10 L s
Nature - -
= | thickness dependence 290 K ]
* Measurements of S 0.8 - )
monomers and polymers & [ _
with the same unitcelland & 06|  Polymer )
. , ; =
identical techniques o e o ; o
S 04l % ¢ o ]
* Monomers = I I
Q@ (]
2 g2 e o ¢ o ]
—~ = o
®Rst ~ 0.25 n Monomer
* Polymers 0.0 —mmmmmm e
0 50 100 150 200 250
*Rst ~ 0.5 Thickness (nm)

Jo Wilson, Anna Kohler, Nature 413, 828 (2001)
FPD Internatianal © CDT 2004 42
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Why are polymers different from small - N
molecules? C D T

Small Molecules: electron-hole capture at separation » 10 nm

(Langevin recombination: Coulomb energy » thermal energy)

weak inter-molecular e-h delocalisation, so only Coulomb interaction involved in e-h
capture cross-section

Polymers: electron and hole arrival on polymer chain, and subsequent recombination
to exciton

(iii) electron-hole capture on

— chain
e () — =
s (e)

(i) hole \ (i) electron

capture capture

step (iii) spin-dependent?

- delocalisation of electron and hole wavefunctions along chain allows
exchange interaction at long range for charges on same chain this
favours singlet bound state at e-h capture (typical range 10 nm)
(Beljonne et al J. Chem. Phys. 102, 2042, 1995)

2004 o= ﬂ‘: -ﬂEr'-m{:!atma’ © CDT 2004 43




Small Molecules C | D), | T
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Light Emitting Polymers C ' D ' T

Couple Monomers Conjugatively

Excitons with S=0

ching Ratig >> 25%
Flec "h &an.IIentera ion
A traal
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Why is the LEP device Efficiency not i~ T
Higher ? C | DT
Because there are other loss mechanisms in the device
* Electrons or Holes passing through the device
* Exciton quenching at
* PEDT/LEP Interface

* i.e. Exciton Quenching occurs at PEDT/LEP Interface
* Cathode

2004 o= ﬂ‘: -ﬂEr'-m{:!atma’ © CDT 2004 46




Ad-Vision Results on Thick PN
Green/Yellow LEP C D T

* Device Structure: ITO/PEDT:PSS (20-30 nm)/LEP (250 nm)/

Ca/Al < 50
* Recombination removed from o 40

quenching sites such as the ';';

cathode and PEDT:PSS < 30
« EQE > 10% 5 ——QE (cd/A) |
« IQE>33% > 20 —=— QE (%)
* PL Efficiency 61 % S 10
* Singlet Ratio ~ 50+ % =

q|_|j O \ \ \ \ \ \ \ \

* Note 33 Cd/A (8% EQE) reported 01 2 3 456 7 8 910
by TDK, Yamagata University,

UCLA Voltage (V)

* This supports the work at the University of Cambridge and suggests
significant efficiency gains are still possible with optimised device
design

9 Data supplied by Dr Melissa Kreger & Professor Sue Carter

FF'D International © CDT 2004 47
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Philips Results CDT

* Device Structure: ITO/New HTL/Covion Super

Yellow/Ba/Al 10
| (@)
* Recombination removed from .
quenching sites such as the <
cathode and PEDT:PSS 8 ]
z 20~ —&— standard
8 - —&— novel
* EQE>12% € 0.
« IQE > 35% _
* Assuming only observe 34% . | | |
oii generatedollght B i - o o
* PL Efficiency 41 % voltage (V)
* Singlet Ratio close to 100 %
E A Meulenkamp et al
Philips, Eindhoven, 2004
FPD International © CDT 2004 48
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Recombination removed from
quenching sites such as the
cathode and PEDT:PSS

EQE > 12.5 %
IQE > 36 %

* Assuming only observe 34%
of generated light

PL Efficiency 38 %
Singlet Ratio close to 100 %

PD Internatiarnal

= o]
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25

20 -
15 i lg:r§=","_-|
—=— standard
10 4 —B- novel
5 ] &%
D 1 I I
0 5 10 15 20

voltage (V)

E A Meulenkamp et al
Philips, Eindhoven, 2004
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Singlet:Triplet Ratio Summary C b DT

* More singlets than expected in polymer LEDs

* Understanding loss mechanisms results in significant efficiency
improvements in LEP diodes

* >25% singlet generation probability demonstrated in real
diodes

* For blue: Is this the only way to high efficiency?

PD Internatiornal © CDT 2004 50
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Why is Blue Phosphorescent - i~
Emission Difficult? C | [@l) T
N
Host Dopant For Blue Emissj onO
COI’]dUCtIOI’]—:—:— --------------------------------- T 2 \
Band xS b &
= Sl S
T e BEe-LN B
R4
x \6 \é Olnm \34eV
> ; <P i 0@ 7 eV
Valence G \\r
Band ot Q\
ISsues:
Need Stable UV Emitter
Very Large Barriers to Electron and Hole Injection

FF'D International © CDT 2004 51
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Singlet:Triplet Ratio Summary C b DT

* More singlets than expected in polymer LEDs

* Understanding loss mechanisms results in significant efficiency
improvements in LEP diodes

* >25% singlet generation probability demonstrated in real
diodes

* For blue: Is this the only way to high efficiency?

* MAYBE

PD Internatiornal © CDT 2004 52
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Conclusion C ‘ D) T

* Blue lifetime increasing rapidly
= > 70,000 hours

= Singlet:Triplet Ratio
* SMF ~ 25%
* P-OLED >> 25%

* PLED technology is gathering momentum

» CDT is established as the technology leader in this
space

PD Internatiornal © CDT 2004 54
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