The Fluid-Mosaic Model, Homeoviscous Adaptation, and Ionic Liquids: Dramatic Lowering of the Melting Point by Side-Chain Unsaturation**

Samuel M. Murray, Richard A. O'Brien, Kaila M. Mattson, Christopher Ceccarelli, Richard E. Sykora, Kevin N. West,* and James H. Davis, Jr.*

Dedicated to Professor Thomas P. Murray

Proposed by Singer and Nicolson in 1972,^[1] the fluid-mosaic model holds that the phospholipid bilayer is a dynamic twodimensional solvent milieu. Its proper function is closely tied to its "fluidity", and that is often quantified by reference to the melting point, $T_{\rm m}$ (increased fluidity corresponds to a lower $T_{\rm m}$ value). The fluid-mosaic model is highly evocative of the emerging picture of nanoscale structuring in ionic liquids (ILs),^[2,3] and just as the function of phospholipid bilayers is tied to the $T_{\rm m}$ value, so too is the utility of ILs. Whereas the former often have low $T_{\rm m}$ values despite being composed of charged species with long aliphatic appendages, the fluidity of ILs generally decreases when progressively longer aliphatic appendages are used.^[4]

It is a challenge to design imidazolium ILs (the most common IL class) that incorporate progressively more lipophilic structural elements while keeping their melting points below room temperature (Figure 1).^[4–9] Indeed, the T_m values of these ILs begin to rise dramatically once an appended *N*alkyl group exceeds seven carbon atoms in length. Herein we report that by using an approach modeled on homeoviscous adaptation (HVA),^[10] ILs with very long alkyl appendages and very low T_m values can be prepared. This discovery may have significant implications for IL use in enzymatic catalysis, lubricants, heat-transfer fluids, and gas storage and separation, among other applications.

Widely accepted as a mechanism by which the melting temperature of cell membranes is modulated, HVA is the

[*] S. M. Murray, R. A. O'Brien, K. M. Mattson, R. E. Sykora, Prof. J. H. Davis, Jr.
Departments of Chemistry and Chemical and Biomolecular Engineering, University of South Alabama Chemistry 223, Mobile, AL 36688 (USA)
Fax: (+1) 251-460-7359
E-mail: jdavis@jaguar1.usouthal.edu
Prof. K. N. West
Department of Chemical and Biomolecular Engineering
EGLB 244, Mobile, AL 36688 (USA)
Fax: (+1) 251-461-1485
E-mail: kevinwest@usouthal.edu
Dr. C. Ceccarelli
Varian, Inc.—Oxford Diffraction Products
2000 Kraft Drive, Suite 1103, Blacksburg, VA 24060 (USA)

[**] J.H.D. thanks Chevron for partial support of this research. R.E.S. gratefully acknowledges the National Science Foundation for their generous support (NSF CAREER grant, CHE-0846680).

Figure 1. Influence of alkyl-chain length on T_m in *N*-alkyl *N*-methylimidazolium salts and the corresponding *n*-alkanes. The graph includes data from the literature^[4-9] and newly synthesized ionic liquids.

incorporation into cell membranes of phospholipids with "kinked" tail structures.^[10] It is argued that the packing efficiency of the collective membrane hydrophobic components is diminished by the presence of these phospholipids and that increased fluidity results. A comparison of the $T_{\rm m}$ value of distearoylphosphatidylcholine with that of dioleylphosphatidylcholine provides a dramatic example of how much impact this seemingly trivial difference can have. The former, with its linear, saturated C_{18} tails has a T_m value of 58 °C; the latter, with its "kinked" C118 tails (each of which incorporates a *cis*-alkenyl group), has a $T_{\rm m}$ value of -22 °C. This effect is also at the heart of the $T_{\rm m}$ difference between the solid triacyl glycerols called fats, and those that are liquid at room temperature known as oils. In both instances, the effect is probably entropic in nature, as in the case of anthracene ("linear", $T_{\rm m} = 217$ °C) and phenanthrene ("kinked", $T_{\rm m} =$ 99°C).^[11] Accordingly, we hypothesized that ILs with long, unsaturated, aliphatic tail structures would, like the corresponding phospholipids, have significantly lower $T_{\rm m}$ values than their counterparts with saturated appendages.

To test the validity of our hypothesis by measuring their $T_{\rm m}$ values, we prepared a series of lipid-inspired ILs in a threestep process from high-purity (99 + %) fatty-alcohol mesylates, 1-methylimidazole, NaI, and NaTf₂N.^[12] Each of the ILs (Scheme 1) had a long alkyl appendage identical to that in a natural fatty acid. Compounds **1**, **3**, and **8** feature fully saturated C₁₆, C₁₈, and C₂₀ side chains, respectively, and their

Angew. Chem. Int. Ed. 2010, 49, 1-5

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Communications

Scheme 1. Cations of the lipidic ILs 1–11. Except for 11 a (see text), each IL is a Tf_2N^- salt (Tf=trifluoromethanesulfonyl).

 $T_{\rm m}$ values provided a baseline against which the $T_{\rm m}$ values of unsaturated variants of the same chain length could be compared. Compound **2**, the unsaturated counterpart of **1**, is *cis*-unsaturated between C9 and C10. Likewise, **4-7** are analogues of **3** with C₁₈ side chains containing one or two double bonds. These compounds differ further on the basis of the configuration (*cis* in **4**, **5**, and **7**, *trans* in **6**) and location along the C₁₈ backbone of the double bond(s). With *cis* unsaturation between C11 and C12, **9** is the "kinked" analogue of the C₂₀ IL **8**.

As is often the case for ionic liquids^[4] and lipids alike,^[13,14] the reproducible acquisition by differential scanning calorimetry (DSC) of the T_m values of the lipid-inspired ILs was challenging, but possible under appropriate conditions (see the Experimental Section). Notably, scans from ILs **1**, **3–6**, and **8–10** exhibited the type of multifeatured traces common to lipidic biomaterials and many ILs. However, **2**, **7**, and **11** consistently produced scans that were featureless down to about -170 °C. For that reason, the T_m values of those ILs were assigned after observation of their behavior during very

slow, repeated heating/cooling cycles in a thermostatically controlled bath (± 1.0 °C). To confirm that the latter procedure produced reliable results, we also applied it to samples of **1**, **3–6**, and **8–10** to determine if their DSC T_m values corresponded to the temperatures at which the visual onset of liquefaction had been apparent with the former approach. Additionally, the T_m values of **1**, **3**, and **8**, all of which were above normal room temperature, were measured by using a standard melting-point apparatus. Significantly, consistent melting points were observed in all cases when more than one technique was used.

The $T_{\rm m}$ values of all ILs studied are listed in Table 1, along with published $T_{\rm m}$ values for the corresponding native fatty acids and fatty-acid methyl esters. The implications of the

Table 1: T_m values of lipid-inspired ILs and related compounds.

IL	Alkyl group ^[a]	<i>T</i> _m [°C]	$T_{\rm m}$ (fatty acid) [°C] ^[b]	T _m (methyl ester) [°C]
1	C ₁₆ (0)	46.9	63.5	33.5
2	C ₁₆ (1[9])	-22.0	0.5	-33.9
3	C ₁₈ (0)	53.5	69.6	38.9
4	C ₁₈ (1[9])	-20.9	16.2	—19.6
5 ^[c]	C ₁₈ (1[11])	-9.8	12.0	-
6	C ₁₈ (1[9t])	16.0	43.7	10.3
7	C ₁₈ (2[9,12])	-46.8	-6.5	-35.0
8	C ₂₀ (0)	62.5	75.5	54.0
9 ^[d]	C ₂₀ (1[11])	4.2	23.5	-34.0
10	C ₁₀ (0)	-18.9	31.0	-12.5
11 b	C ₁₀ (1[4])	-37.0	-	-

[a] (x[y]): x = number of double bonds in the alkyl group; y = first carbon atom of the double bond; t = *trans* olefin. [b] Common names of the corresponding fatty acids (top to bottom): palmitic, palmitoleic, stearic, oleic, *cis*-vaccenic, elaidic, linoleic, arachidic, gondoic, capric, obtusilic. [c] Glass-transition temperature: $T_g = -13.5$. [d] $T_g = -3.42$ °C.

data are quite clear. The introduction of *cis* double bonds ("kinks") into the long aliphatic tails of these salts leads to an increase in fluidity that closely parallels that observed for their molecular relatives (Table 1, Figure 2). Indeed, unsaturation leads to a radical decrease in the T_m value with respect to that of the relevant saturated IL standard **1**, **3**, or **8**. Specifically, ΔT_m for the saturated/unsaturated pairs **1**/2, **3**/4, and **8**/9 was 68.9, 74.4, and 58.3 °C, respectively. Interestingly, the lowest T_m values were observed for ILs **11b**, **2**, and **7**. Compound **11b** has an unsaturated C_{10} side chain, **2** has an unsaturated C_{16} side chain, and **7** has a C_{18} side chain containing two *cis* olefin groups.

Data from the C₁₈ IL family also reveals that a *cis* double bond at C11–C12 rather than at C9–C10 is less effective at lowering the T_m value, but only moderately so. In particular, the 11.1 °C difference in ΔT_m for 3/4 versus 3/5—the putative "position effect"—is small in comparison to the "unsaturation effect" evident from the ΔT_m values for each of these pairs. The observation that the ΔT_m value of 58.3 °C for 8/9 is much closer to that of the 3/5 pair (63.3 °C) than that of the 3/4 pair (74.4 °C) also provides tentative support for this inference, although the two-carbon-atom chain-length difference in the systems complicates the comparison.

Although the double-bond position in the side chain of the C₁₈ ILs studied accounts for a relatively small difference in $\Delta T_{\rm m}$ (as compared to the effect of introducing unsaturation at either position in the side chain), the effect of its geometry (*cis*

www.angewandte.org

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers!

Figure 2. T_m value versus alkyl-chain length for saturated $C_{10}-C_{20}$ alkyl MIM⁺Tf₂N⁻ ILs, the new lipid-inspired unsaturated ILs, and the corresponding saturated fatty acids:^[9] \odot saturated fatty acids, \bullet saturated alkyl MIM⁺Tf₂N⁻ ILs, \Box 9-*cis* fatty acids, \blacksquare 9-*cis* alkyl MIM⁺Tf₂N⁻ ILs, \diamond 9-*trans* fatty acid, \bullet 9-*trans* alkyl MIM⁺Tf₂N⁻ IL, \triangledown 11-*cis* fatty acids, \blacksquare 11-*cis* alkyl MIM⁺Tf₂N⁻ ILs (MIM = methylimida-zolium).

or trans) is more substantial. Whereas the presence of the cis double bond in 4 leads to a $T_{\rm m}$ decrease of 74.4 °C relative to that of IL 3 with a saturated side chain, the $T_{\rm m}$ decrease induced by the *trans* double bond at the same position in 6 is only 37.5 °C. This effect closely resembles that observed for the analogous C₁₈ fatty acids and their methyl esters. For example, the difference in the $T_{\rm m}$ values of stearic acid and oleic acid is 53.4 °C, whereas the difference in the $T_{\rm m}$ values of stearic acid and elaidic acid is 25.9°C. In the case of the corresponding methyl esters, these values are 58.5 and 28.6 °C, respectively. The consistently smaller $T_{\rm m}$ differences due to trans versus cis unsaturation across this series of related compounds probably results from a smaller packing-disruption effect imposed by trans double bonds. When the alkyl chains of these molecules are depicted in their low (rotational) energy trans conformations (as in Scheme 1), saturated and trans-unsaturated chains can clearly be "linear", whereas cis-unsaturated chains are plainly constrained to kink.

We felt that X-ray crystallographic studies of one of our materials might provide more insight into these issues. Despite considerable effort, we were unable to isolate the unsaturated materials in single-crystalline form. Consequently, we prepared unsaturated but progressively shorterchained analogues with various anions until we isolated a material, the salt 11a, which formed suitable crystals at room temperature. We then studied 11a by X-ray diffraction (Figure 3). Significantly, the unit cell contains four symmetry-independent cations, each of which has its long (C_{10}) appendage contorted substantially away from the conformationally all-trans linear norm seen in the crystal structures of imidazolium ions with long saturated side chains.^[15] In each C10 chain, the kinking induced by the double bond is clear, and the overall irregular orientation of the side chains in these cations is probably representative of the orientation of the longer-chain unsaturated counterparts.

Having synthesized the imidazolium iodide salt for use in the preparation of 11a, we decided prepare 11b (its Tf₂N⁻

Figure 3. ORTEP diagrams of the four symmetry-independent cations in crystals of **11a** (a BPh₄⁻ salt). Each ORTEP diagram has been independently oriented to make clear the side-chain nonlinearity. The double bond is between the fourth and fifth carbon atoms of the C₁₀ group.

counterpart) as well, and for sake of comparion compound 10, the Tf_2N^- salt of the saturated analog of the cation in **11 a/b**. We thought this worth doing because the site of unsaturation in 11, unlike those in 2, 4-7 and 9, is in the so-called "symmetry breaking region" of the imidazolium cation.^[4] As described by Rothenberg and co-workers in regard to N-alkyl N-methylimidazolium salts, the N-alkyl groups cause the symmetry reduction responsible for poor ion packing of the cations and low melting points.^[4] However, the T_m values of such salts are commonly observed to rise again (Figure 1) once the alkyl group exceeds seven carbon atoms in length, as a result of the increasing cohesion due to van der Waals forces in the "hydrophobic region" (that portion of the alkyl group beyond C_7).^[4,16] Significantly, a comparison of the T_m values of 10 and 11b indicates that the effects of side-chain unsaturation are operative whether the double bond is in the symmetry-breaking or hydrophobic region. However, the impact of unsaturation within the symmetry-breaking region (18°C in this case) is substantially less than when it occurs in the hydrophobic region in 2, 4, 5, 7, and 9. Overall, we take this data to indicate that: a) the effect of the symmetrybreaking region on the $T_{\rm m}$ value can be amplified through structural modifications within it; and b) the incorporation of structural irregularities (kinks) in the hydrophobic region can act to counter the $T_{\rm m}$ increase that normally occurs as van der Waals forces accumulate in this part of the ion.

The melting point is not the only fluid characteristic of these ILs that is affected by unsaturation; viscosity is also influenced. Although the data accumulated thus far on the viscosity of lipid-inspired ILs are less extensive than the $T_{\rm m}$ data, they also support a connection between side-chain unsaturation and IL liquidity. Specifically, although the viscosity of 3 was measured only at 60°C (because of its melting point of 53.5 °C), it is considerably higher than that of the other C₁₈ ILs at the same temperature. At 60 °C, 3 has a viscosity of 54.3 cSt, whereas its oleyl counterpart 4 has a viscosity of 36.9 cSt. Likewise, the vaccenyl IL 5 has a viscosity of 34.4 cSt at 60 °C. This value is close to that of 4, but again significantly lower than that of 3. As expected, the viscosities of the unsaturated ILs are higher at lower temperatures. For example, 4 and 5 have viscosities of 165.3 and 149.6 cSt, respectively, at 25°C.

www.angewandte.org

Communications

Like unsaturated fats, ILs 2, 4-7, 9, and 11 discolor over time if left in contact with air. This observation indirectly suggests a high solubility of gases (e.g., O2) in these new species, as in unsaturated fats such as olive oil.^[17] Although the degree of oxidation is sufficiently low as to be undetectable by NMR spectroscopy after a month, discoloration is apparent sooner, and these ILs gradually acquire a faint odor of decomposition products associated with side-chain oxidation. Although likely to render the cations biodegradable,^[18] this reactivity will be deleterious for many other applications. Oxidation can be suppressed by storing the ILs under N₂ or by adding to them small quantities (ca. 1 mol%) of butylated hydroxytoluene (BHT), an antioxidant used to prevent rancidification in processed foods.

Not surprisingly, the new ILs are good solvents for cholesterol, a major membrane component in many organisms. Whereas little cholesterol dissolves in "typical" ILs, such as $[BMIM]Tf_2N$ (BMIM = 1-butyl-3-methylimidazolium), we have observed the dissolution of up to 30 mass percent in 4 at room temperature. This result prompts us to suggest that these new unsaturated ILs and similar ILs may be useful as solvents for biomolecules that are membrane-localized or drug molecules that act on membrane components or passively diffuse through the phospholipid bilayer to enter the cell. One category of species that are expressly interesting in this context is the lipases, which have been investigated for their catalytic behavior in more typical ILs.^[19] Although the factors governing enzyme activity and stability in ILs are complex,^[19] it seems reasonable to propose that IL solvents more akin to those environments in which such enzymes naturally function may offer advantages over other IL solvents.

In conclusion, the present data show that ILs with long alkyl appendages respond to side-chain modification-specifically unsaturation-in a fashion reminiscent of homeoviscous adaptation by living organisms. It is a phenomenon that is eminently exploitable from a utilitarian standpoint and that we believe creates new opportunities for manipulating the properties of ILs and other synthetic soft materials. Studies aimed at assessing an array of such possibilities are in progress.

Experimental Section

High-purity (>99%) fatty-alcohol mesylates were obtained from Nu-Chek Prep, Inc. and used as received for the preparation (under Finkelstein conditions)^[20] of the corresponding iodides. The ILs were prepared and characterized by using standard techniques,^[7] with the exception that all reactions were performed under N2. Melting points were determined by using a Seiko Instruments differential scanning calorimeter, model SSC/5200-DSC 220U, with a heating rate of 5° min⁻¹. The reported data are the average of at least three trials, and were reproducible to within 1°C. The phase transition identified as the melting point is the one for which a liquid is the product; the former state may have been either crystalline or amorphous. Several of the new ILs were difficult to crystallize even by cooling to -170 °C. However, we found that preheating of the samples at 75 °C for 10 min followed by slow cooling to -170 °C resulted in an exothermic event on subsequent heating that was consistent with a glass transition or crystallization from a gel. Subsequent warming then reproducibly yielded a reliable $T_{\rm m}$ value. Viscosities were measured by using the traditional flow technique in Cannon Ubbelohde Viscotesters 200L119 and 300L33. The viscometers were immersed in a water bath with an HCTB-3030 immersion cooler from Omega Instruments that was capable of maintaining temperatures within 0.05 °C. The measured viscosities were reproducible to within 0.1 cSt.

Crystal data for **11a**: $C_{38}H_{45}BN_2$, $M_r = 540.57$, $0.17 \times 0.02 \times$ 0.02 mm³, monoclinic, $P2_1/c$, a = 18.1597(8), b = 35.5151(11), c =21.3555(7) Å, $\beta = 111.634(5)^{\circ}$, V = 12802.9(8) Å³, Z = 16, $\rho_{calcd} =$ 1.122 g cm⁻³, $\mu = 0.479$ mm⁻¹, Cu_{Ka} radiation ($\lambda = 1.54178$ Å), T = 100(2) K, $2\tau_{max} = 59.06^{\circ}$, 38370 measured and 17595 independent reflections, $R_{int} = 0.1026$, R = 0.0579, wR = 0.1084, Oxford Diffraction Ltd., Xcalibur CCD system, solution with direct methods and refinement with 1490 parameters, difference map between +0.193 and -0.209 e Å⁻³. CCDC 752914 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www. ccdc.cam.ac.uk/data_request/cif.

Received: November 2, 2009 Revised: January 28, 2010 Published online:

Keywords: fluid-mosaic model · homeoviscous adaptation · ionic liquids · lipids · phase transitions

- [1] S. J. Singer, G. L. Nicholson, Science 1972, 175, 720-731.
- [2] J. N. A. Canongia Lopes, A. A. H. Padua, J. Phys. Chem. B 2006, 110, 3330-3335.
- [3] A. A. H. Padua, J. N. A. C. Lopes, ACS Symp. Ser. 2007, 975, 86-101.
- [4] I. López-Martin, E. Burello, P. N. Davey, K. R. Seddon, G. Rothenberg, ChemPhysChem 2007, 8, 690-695.
- [5] A. E. Bradley, C. Hardacre, J. D. Holbrey, S. Johnston, S. E. J. McMath, M. Nieuwenhuyzen, Chem. Mater. 2002, 14, 629-635.
- [6] S. V. Dzyuba, R. A. Bartsch, ChemPhysChem 2002, 3, 161-166.
- [7] C. M. Gordon, J. D. Holbrey, A. R. Kennedy, K. R. Seddon, J. Mater. Chem. 1998, 8, 2627-2636.
- [8] J. D. Holbrey, K. R. Seddon, J. Chem. Soc. Dalton Trans. 1999, 2133 - 2140.
- [9] P. J. Linstrom, W. G. Mallard, http://webbook.nist.gov (retrieved October 31, 2009), National Institute of Standards and Technology, Gaithersburg MD, 20899, 2009.
- [10] M. Sinensky, Proc. Natl. Acad. Sci. USA 1974, 71, 522-525.
- [11] J. Wei, Ind. Eng. Chem. Res. 1999, 38, 5019-5027.
- [12] C. M. Gordon, M. J. Muldoon in Ionic Liquids in Synthesis, Vol. 1 (Eds.: P. Wasserscheid, T. Welton), Wiley-VCH, Weinheim, 2007, pp. 9-20.
- [13] D. Schachter, *Hepatology* **1984**, *4*, 140–151.
- [14] M. C. Costa, M. P. Rolemberg, L. A. D. Boros, M. A. Kraehenbuehl, M. G. de Oliveira, A. J. A. Meirelles, J. Chem. Eng. Data 2007, 52, 30-36.
- [15] X. Wang, F. W. Heinemann, M. Yang, B. U. Melcher, M. Fekete, A.-V. Mudring, P. Wasserscheid, K. Meyer, Chem. Commun. 2009. 7405-7407.
- [16] We think it both important and noncoincidental that this length (about seven carbon atoms) also corresponds to the length at which the organic domain of alkyl imidazolium ILs appears to become effectively continuous in character (see references [3] and [4]).
- [17] F. D. Gunstone, The Chemistry of Oils and Fats: Sources, Composition, Properties and Uses, CRC, Boca Raton, 2004, pp. 141-143.
- [18] N. Gathergood, M. T. Garcia, P. J. Scammells, Green Chem. 2004, 6, 166-175.
- [19] F. van Rantwijk, R. A. Sheldon, Chem. Rev. 2007, 107, 2757-2785.
- [20] A. Streitwieser, Jr., Chem. Rev. 1956, 56, 571-752.

www.angewandte.org

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angew. Chem. Int. Ed. 2010, 49, 1-5

These are not the final page numbers!

Communications

Lipidlike Ionic Liquids

The Fluid-Mosaic Model, Homeoviscous Adaptation, and Ionic Liquids: Dramatic Lowering of the Melting Point by Side-Chain Unsaturation

Defying conventional wisdom: Ionic liquids with long, unsaturated alkyl appendages (see top structure) defy established trends that link long ion-bound alkyl groups to higher melting points. The new ILs are also less viscous than a saturated standard (see bottom structure) at the same temperature. These features parallel those that underpin homeoviscous adaptation in certain organisms and are indirectly supportive of a fluid-mosaic-like nanoscale character.

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

^{winheim} www.angewandte.org 5 These are not the final page numbers!